- #1
Physical_Fire
- 28
- 3
A glass cube is held in contact with a liquid and a light ray is directed at a vertical face of the cube. The angle of incidence at the vertical face is 42° and the angle of refraction is 27° as shown in the diagram. The light ray is totally internally reflected for the first time at P. Complete the diagram to show the path of the ray beyond P to the air and calculate the critical angle for the glass-liquid boundary.
Here is the image: .
In the answer scheme, the critical angle is given as 63°. If it is 63°, shouldn't the refracted ray travel along the boundary and not totally internally reflect, as total internal reflection occurs when the angle of incidence is greater than the critical angle? How is it possible when they are the same angle?
Here is the image: .
In the answer scheme, the critical angle is given as 63°. If it is 63°, shouldn't the refracted ray travel along the boundary and not totally internally reflect, as total internal reflection occurs when the angle of incidence is greater than the critical angle? How is it possible when they are the same angle?
Last edited: