- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Let $a_1,\,a_2,\,\cdots,\,a_{12}$ be positive numbers. Show that at least of the following must be true:
$\dfrac{a_1}{a_2}+\dfrac{a_3}{a_4}+\dfrac{a_5}{a_6}+\dfrac{a_7}{a_8}+\dfrac{a_9}{a_{10}}\ge 5$,
$\dfrac{a_{11}}{a_{12}}+\dfrac{a_2}{a_1}+\dfrac{a_4}{a_3}+\dfrac{a_6}{a_5}\ge 4$, or
$\dfrac{a_8}{a_7}+\dfrac{a_{10}}{a_9}+\dfrac{a_{12}}{a_{11}}\ge 3$
$\dfrac{a_1}{a_2}+\dfrac{a_3}{a_4}+\dfrac{a_5}{a_6}+\dfrac{a_7}{a_8}+\dfrac{a_9}{a_{10}}\ge 5$,
$\dfrac{a_{11}}{a_{12}}+\dfrac{a_2}{a_1}+\dfrac{a_4}{a_3}+\dfrac{a_6}{a_5}\ge 4$, or
$\dfrac{a_8}{a_7}+\dfrac{a_{10}}{a_9}+\dfrac{a_{12}}{a_{11}}\ge 3$