MHB Show $n\equiv 1 \pmod 9$ for Even Perfect Numbers $n>6$

  • Thread starter Thread starter alexmahone
  • Start date Start date
AI Thread Summary
The discussion centers on proving that all even perfect numbers greater than 6 satisfy the condition $n \equiv 1 \pmod{9}$. Initial confusion arose when the term "perfect numbers" was misread as "perfect squares." The correct approach involves expressing even perfect numbers in the form $1 + (2^p + 1)(2^{p-1} - 1)$, where $p$ is an odd prime. Participants are encouraged to demonstrate that $2^p - 2$ and $2^{p-1} - 1$ are divisible by 3, leading to the conclusion that the expression is congruent to 1 modulo 9. The discussion emphasizes the importance of showing work for effective assistance.
alexmahone
Messages
303
Reaction score
0
Show that $n\equiv 1 \pmod 9$ for all even perfect numbers $n>6$.
 
Mathematics news on Phys.org
Hi Alexmahone,

Please check back to make sure your statement is the intended one, because as it stands it is false. For instance, $4^2 = 16$ is not congruent to $1\pmod{9}$ and $12^2 = 144 = 16\cdot 9$ is not congruent to $1\pmod{9}$.
 
Euge said:
Hi Alexmahone,

Please check back to make sure your statement is the intended one, because as it stands it is false. For instance, $4^2 = 16$ is not congruent to $1\pmod{9}$ and $12^2 = 144 = 16\cdot 9$ is not congruent to $1\pmod{9}$.

I said "perfect numbers", not "perfect squares".

A perfect number is a number that is equal to the sum of its proper divisors. Perfect number - Wikipedia, the free encyclopedia
Eg, $6=1+2+3$
$28=1+2+4+7+14$
 
Sorry about that, I misread it as perfect squares. Let's try again. Every even perfect number greater than $6$ can be written in the form

$$1+(2^p+1)(2^{p-1}-1)$$

where $p$ is an odd prime. Show that $2^p - 2$ and $2^{p-1}-1$ are divisible by $3$, using the fact that $p$ is odd. Then deduce that the above form is congruent to $1\pmod{9}$. More explicitly, you can express the above form as $1 + 9t_{(2^p-2)/3}$ where $ t_k $ represents the $k$-th triangular number.

In the future, please do not simply state the question --- show what work you've done or where you're stuck so that we may help you more effectively. :)
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top