- #1
psie
- 264
- 32
- Homework Statement
- Let ##c_0## be the real vector space of all real sequences that converge to ##0##. Let ##S## be the subset of ##c_0## consisting of all elements ##(x_n)## such that ##\sum _{n=1}^{\infty }2^{-n}x_n=0##. Show that ##S## is a closed subspace of ##c_0## and that no point of ##c_0\setminus S## has a closest point in ##S##.
- Relevant Equations
- Linear functionals, kernel, sequence spaces, norms, etc.
From Bridges' Foundations of Real and Abstract Analysis.
I'm given the following hint. Given ##a=(a_n)\in c_0\setminus S##, set ##\alpha=\sum _{n=1}^{\infty }2^{-n}a_n## and show that ##d(a,S)\leq|\alpha|##. Let ##x=(x_n)\in S##, suppose that ##\lVert a-x\rVert\leq|\alpha|##, and obtain a contradiction.
I can show that ##S## is a closed subspace of ##c_0## by considering the linear functional $$\phi : c_0 \to \Bbb{R} : (x_n) \mapsto \sum_{n=1}^\infty \frac{1}{2^n}x_n,$$ and show that it is bounded and hence its kernel is closed, which is ##S##. But I'm stuck at the second part. I do not really understand the hint. I do not know how to show ##d(a,S)\leq|\alpha|##, why we can suppose ##\lVert a-x\rVert\leq|\alpha|## and what would be contradicted. Grateful for any help.
I'm given the following hint. Given ##a=(a_n)\in c_0\setminus S##, set ##\alpha=\sum _{n=1}^{\infty }2^{-n}a_n## and show that ##d(a,S)\leq|\alpha|##. Let ##x=(x_n)\in S##, suppose that ##\lVert a-x\rVert\leq|\alpha|##, and obtain a contradiction.
I can show that ##S## is a closed subspace of ##c_0## by considering the linear functional $$\phi : c_0 \to \Bbb{R} : (x_n) \mapsto \sum_{n=1}^\infty \frac{1}{2^n}x_n,$$ and show that it is bounded and hence its kernel is closed, which is ##S##. But I'm stuck at the second part. I do not really understand the hint. I do not know how to show ##d(a,S)\leq|\alpha|##, why we can suppose ##\lVert a-x\rVert\leq|\alpha|## and what would be contradicted. Grateful for any help.