- #1
krissycokl
- 8
- 0
Homework Statement
Suppose that the function [itex]f|(a,b)→ℝ[/itex] is uniformly continuous. Prove that [itex]f|(a,b)→ℝ[/itex] is bounded.
Homework Equations
A function [itex]f|D→ℝ[/itex] is uniformly continuous provided that whenever {un} and {vn} are sequences in D such that lim (n→∞) [un-vn] = 0, then lim (n→∞) [f(un) - f(vn)] = 0.
A function [itex]f|D→ℝ[/itex] is bounded if there exists a real number M such that |f(x)| ≤ M for all x in D
Every bounded sequence has a convergent subsequence.
The Attempt at a Solution
[itex]f|(a,b)→ℝ[/itex] is uniformly continuous. Then for all sequences un and vn in (a,b) such that lim (n→∞) [un - vn] we have lim (n→∞) [f(un) - f(vn)] = 0.
Suppose that f is not bounded. Then for all real numbers M, there exists a number x in (a,b) such that |f(x)|> M. Further, for all natural numbers n, there exists an xn in (a,b) such that |f(xn)|> n . Then {xn} is a sequence in the bounded, open interval (a,b). Thus {xn} has a convergent subsequence {xnk}.
Aaand...I'm not even really sure where I was heading with that. Direction would be greatly appreciated. This is a basic real analysis course, we haven't talked about metric spaces, Cauchy-continuity, or any of that stuff. So, whatever proof the text wants should use rather simple concepts. Thanks in advance for your time.