Simplified modeling of teledeltos paper

  • Thread starter Thread starter tempneff
  • Start date Start date
  • Tags Tags
    Modeling Paper
AI Thread Summary
The discussion focuses on creating a physics simulation to replicate the equipotential mapping experiment using teledeltos paper. Key considerations include the relationship between voltage and the electric field, with an emphasis on the material being resistive rather than semiconductive. Participants discuss assumptions for simulating the electrical field lines, such as using perfect conductors as equipotential boundaries and deciding between finite or infinite sheet models. Recommendations for relevant texts and resources are provided to assist with numerical procedures and electric field mapping. The simulation aims to be a low-fidelity educational tool for university students.
tempneff
Messages
82
Reaction score
3
TL;DR Summary
Trying to understand the assumptions behind the use of teledeltos paper to map electric fields
I'm writing a physics simulation to mimic the old equipotential mapping experiment like this one. I can't find much information on how the voltage across this semi-conducting sheet relates to the E-field. Before I start heading down the path sheet resistance and the resistivity of thin-film carbon, I thought I'd ask here.

What are the assumptions that I can make to represent the electrical field lines as voltages across teledeltos paper given a known source voltage and physical dimensions?
 
Engineering news on Phys.org
I believe the material is best described as resistive, not semiconductive.
You can assume that perfect conductors are equipotential boundary conditions.

You must decide if you are simulating a finite rectangular sheet, with infinite external resistance, or if you are simulating an infinite virtual sheet.

Will you employ a cartesian grid or a curved orthogonal grid.
Each cell will have a voltage, current magnitude and direction, giving 2D voltage gradient.

Do you have a text that demonstrates the numerical procedure on a cartesian grid ?
 
Last edited:
  • Like
Likes tempneff
Start here; Electromagnetics, by Kraus and Carver. See section 3.22
There is a copy here; https://www.qsl.net/va3iul/Files/Old_Radio_Frequency_Books.htm

For mapping electric fields, this book is well worth finding;
Analysis and Computation of Electric and Magnetic Field Problems. Second Edition. 1973.
By K. J. Binns and P. J. Lawrenson. Publisher; Pergamon Press.
ISBN 0-08-016638-5

Also;
Title; Electric Field Analysis. 2015.
By; Sivaji Chakravorti. Publisher; CRC Press.
ISBN-13: 978-1-4822-3337-7 (eBook - PDF)

ebooks or files.pdf can be found.
 
  • Like
Likes tempneff
Thanks @Baluncore, that is the oldest pdf I've seen in some time! I think my initial approach was complicating an easy problem. The lab assumes that the paper is lossless and that the charge distribution matches the electric field created by the electrodes. For the Point-source case (circular electrodes; simulated map voltages, real map voltages, and a simple kq/r calculation all agree. Why? That I'm not sure of.
 
I should have mentioned, that this is a low fidelity simulation for university undergraduates to play with online.
 
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
Thread 'How Does Jaguar's 1980s V12 Dual Coil Ignition System Enhance Spark Strength?'
I have come across a dual coil ignition system as used by Jaguar on their V12 in the 1980's. It uses two ignition coils with their primary windings wired in parallel. The primary coil has its secondary winding wired to the distributor and then to the spark plugs as is standard practice. However, the auxiliary coil has it secondary winding output sealed off. The purpose of the system was to provide a stronger spark to the plugs, always a difficult task with the very short dwell time of a...
Back
Top