Simplify $ln(x(\sqrt{1+e^x}-\sqrt{e^x})) + ln(\sqrt{1+e^{-x}}+1)$

  • Thread starter Thread starter walker242
  • Start date Start date
  • Tags Tags
    Simplify
Click For Summary
The expression ln(x(√(1+e^x) - √(e^x))) + ln(√(1+e^(-x)) + 1) simplifies to ln(x(√(2 + e^(-x) + e^x) - √(e^x))). Further simplification reveals that √(2 + e^(-x) + e^x) is a perfect square trinomial, leading to √(2 + e^(-x) + e^x) = e^(x/2) + e^(-x/2). Ultimately, the expression simplifies to ln(xe^(-x/2)), which can be rewritten as ln(x/e^(x/2)). This demonstrates a clear path to the final simplified form.
walker242
Messages
12
Reaction score
0

Homework Statement


As in title, simplify ln(x(\sqrt{1+e^x}-\sqrt{e^x})) + ln(\sqrt{1+e^{-x}}+1), x > 0.


Homework Equations


-


The Attempt at a Solution


So far
ln(x(\sqrt{1+e^x}-\sqrt{e^x})) + ln(\sqrt{1+e^{-x}}+1) = ln(x(\sqrt{1+e^x}-\sqrt{e^x})(\sqrt{1+e^{-x}}+1)) = ln(x(\sqrt{2+e^{-x} + e^{x}} - \sqrt{e^x})).

Is it possible to get further?
 
Physics news on Phys.org
I worked it through and ended with what you have. I don't see anything more you can do.
 
Thanks. :)
 
Actually, it's possible to get further:

\ln \left(x \left(\sqrt{1+e^{x}}-\sqrt{e^{x}}\right) + \ln\left(\sqrt{1+e^{-x}}+1 \right) =<br /> \ln x + \ln\left(\sqrt{1+e^{x}}-\sqrt{e^{x}}\right) + \ln\left(\sqrt{1+e^{-x}}+1\right) =

= \ln x + \ln\left(\left(\sqrt{1+e^{x}}-\sqrt{e^x}\right) \left(\sqrt{1+e^{-x}} + 1\right)\right)<br /> = \ln x + \ln\left(\sqrt{1+e^{x}}\sqrt{1+e^{-x}}+\sqrt{1+e^{x}}-\sqrt{e^{x}}\sqrt{1+e^{-x}}-\sqrt{e^x}\right)

= \ln x + \ln\left(\left(\left(1+e^{x}\right)\left(1+e^{-x}\right)\right)^{\frac{1}{2}} + \left(1+e^{x}\right)^{\frac{1}{2}}-\left(\left(e^{x}\right)\left(1+e^{-x}\right)\right)^{\frac{1}{2}}-\left(e^{x}\right)^{\frac{1}{2}}\right) = \ln x + \ln\left(\left(1+e^{-x}+e^{x}+e^{0}\right)^{\frac{1}{2}} + \left(1+e^{x}\right)^{\frac{1}{2}} - \left(e^{x}+e^{0}\right)^{\frac{1}{2}}-\left(e^{x}\right)^{\frac{1}{2}}\right)

= \ln x + \ln\left(\left(2+e^{-x}+e^{x}\right)^{\frac{1}{2}} + \left(1+e^{x}\right)^{\frac{1}{2}} - \left(e^{x}+1\right)^{\frac{1}{2}} -\left(e^{x}\right)^{\frac{1}{2}}\right)<br /> = \ln x + \ln\left(\sqrt{\left(2 + e^{-x} + e^{x}\right)} - \sqrt{\left(e^{x}\right)}\right)

= \ln x + \ln\left(\sqrt{\left(e^{\frac{x}{2}} + e^{-\frac{x}{2}}\right)^2} - \sqrt{e^x}\right) = \ln x + \ln\left(e^{\frac{x}{2}} + e^{-\frac{x}{2}} - e^\frac{x}{2}\right)<br /> = \ln x + \ln\left(e^{-\frac{x}{2}}\right) = \ln \left(\frac{x}{e^\frac{x}{2}}\right)
 
You're right. It's also possible to get to your result with much less work.
Here's where the OP ended.
ln(x(\sqrt{2+e^{-x} + e^{x}} - \sqrt{e^x}))
The expression in the first radical happens to be a perfect square trinomial, something I didn't notice earlier.


2+e^{-x} + e^{x} = e^{x} + 2 + e^{-x} = (e^{x/2} + e^{-x/2})^2
The expression being squared is always positive, so we don't have to worry about the negative square root. IOW,
\sqrt{e^{x} + 2+e^{-x} } = \sqrt{(e^{x/2} + e^{-x/2})^2} = e^{x/2} + e^{-x/2}

Here's the complete work.
ln(x(\sqrt{2+e^{-x} + e^{x}} - \sqrt{e^x})) <br /> = ln(x(e^{x/2} + e^{-x/2} - e^{x/2}))<br /> = ln(xe^{-x/2})<br /> = ln(\frac{x}{e^{x/2}})
 
Last edited:
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
9
Views
1K