- #1
cbarker1
Gold Member
MHB
- 349
- 23
- TL;DR Summary
- Simplifying nested radical that has a complex number under it.
Dear Everyone,
This post is not a homework assignment...
I want to use the quartic formula. In one step is to solve the resolvent cubic. I know that there is 3 real solutions this particular resolvent cubic. I want to know how Bombelli got his answers before the discovery of the trigonometric method for the casus irrecidulus.
I have this radical ##\sqrt[3]{\frac{24128}{27}-\frac{2520i\sqrt{3}}{27}}##. I know that if the radicand is a perfect cube, then I can cancel the cube root with the cube. So ##(a-bi\sqrt{3})^3= \frac{24128}{27}-\frac{2520i\sqrt{3}}{27}##. We can equate the Real part of both ##(a-bi\sqrt{3})^3## and the ##\frac{24128}{27}-\frac{2520i\sqrt{3}}{27}## and the imagery part of both ##(a-bi\sqrt{3})^3## and the ##\frac{24128}{27}-\frac{2520i\sqrt{3}}{27}##. To yield this system of polynomial equations: $$
\begin{align*}
a^3-9ab^2 &= \frac{24128}{27} \\
3b^3-3a^2b &= \frac{2520}{27} \\
\end{align*}$$
We know that ##a,b\not=0##.I am having a hard time solving this system by hand. Is there any tips on solving a system of polynomials?
Thanks,
Cbarker1
This post is not a homework assignment...
I want to use the quartic formula. In one step is to solve the resolvent cubic. I know that there is 3 real solutions this particular resolvent cubic. I want to know how Bombelli got his answers before the discovery of the trigonometric method for the casus irrecidulus.
I have this radical ##\sqrt[3]{\frac{24128}{27}-\frac{2520i\sqrt{3}}{27}}##. I know that if the radicand is a perfect cube, then I can cancel the cube root with the cube. So ##(a-bi\sqrt{3})^3= \frac{24128}{27}-\frac{2520i\sqrt{3}}{27}##. We can equate the Real part of both ##(a-bi\sqrt{3})^3## and the ##\frac{24128}{27}-\frac{2520i\sqrt{3}}{27}## and the imagery part of both ##(a-bi\sqrt{3})^3## and the ##\frac{24128}{27}-\frac{2520i\sqrt{3}}{27}##. To yield this system of polynomial equations: $$
\begin{align*}
a^3-9ab^2 &= \frac{24128}{27} \\
3b^3-3a^2b &= \frac{2520}{27} \\
\end{align*}$$
We know that ##a,b\not=0##.I am having a hard time solving this system by hand. Is there any tips on solving a system of polynomials?
Thanks,
Cbarker1
Last edited by a moderator: