Simultaneous eigenstate of angular momentum and hamiltonian

AI Thread Summary
The discussion centers on demonstrating the simultaneous eigenstates of angular momentum and Hamiltonian using the parity operator, Π_1. Participants clarify that Π_1 acts on a wavefunction by reflecting its x-coordinate, and its properties are essential for calculating the behavior of the angular momentum operator L_3. The need to show that the Hamiltonian commutes with Π_1 is emphasized, along with the concept that energy eigenstates can be degenerate, corresponding to different m values. The conclusion drawn is that the eigenstates |E,m> and Π_1|E,m> share the same energy but differ in their m quantum numbers, highlighting the role of m in the degeneracy of energy states.
davon806
Messages
147
Reaction score
1

Homework Statement


b.jpg

The red box only

Homework Equations

The Attempt at a Solution


I suppose we have to show
L_3 (Π_1) | E,m> = λ (Π_1) | E,m>
and
H (Π_1) | E,m> = μ (Π_1) | E,m>
And I guess there is something to do with the formula given? But they are in x_1 direction so what did they have to do with | E,m> ?
Any hints given will be much appreciated.
Thanks:smile:
 
Physics news on Phys.org
davon806 said:
I suppose we have to show
L_3 (Π_1) | E,m> = λ (Π_1) | E,m>
Figure out the behavior of ##L_3## under the transformation induced by ##\Pi_1##.
davon806 said:
H (Π_1) | E,m> = μ (Π_1) | E,m>
First show that the Hamiltonian commutes with ##\Pi_1##.
 
blue_leaf77 said:
Figure out the behavior of ##L_3## under the transformation induced by ##\Pi_1##.

First show that the Hamiltonian commutes with ##\Pi_1##.

1.I don't know what Π_1 is representing , I mean,like position and momentum operator you have Xψ = xψ , Pψ = -ih d/dx ψ ,but here you have got something like ΠXΠ^-1 = -X which is not the usual form of Kψ = kψ. Then what can I do to compute [ H,Π } ?

2.Since L_3 is acting in the z-direction, Π L_3 ∏^-1 = L_3 ? so Π L_3 = L_3 Π and
L_3 Π | E,m> = Π L_3 | E,m> = m Π | E,m> ?

However ,the question said Π X ∏^-1 is valid for position and momentum operator, but here we are dealing with angular momentum operator?
 
##\Pi_1## is the parity operator in ##x## direction. It is defined by its action in position space on a wavefunction ##\psi(x_1,x_2,x_3)## by ##\Pi_1 \psi(x_1,x_2,x_3) = \psi(-x_1,x_2,x_3)##. But this is not necessary in the present problem since you are already given by its transformation properties.
davon806 said:
here we are dealing with angular momentum operator?
By expanding ##L_3 = x_1 p_2 - x_2 p_1## and using the properties of ##\Pi_1## as given in the question, calculate ##L_3 \Pi_1##.
davon806 said:
here you have got something like ΠXΠ^-1 = -X which is not the usual form of Kψ = kψ.
Don't compare them, one is the product between operators and the other one is the application of an operator on a state.
davon806 said:
Since L_3 is acting in the z-direction
No, it doesn't. It acts on the azimuthal coordinate instead, please review again your QM notes.
 
Last edited:
blue_leaf77 said:
##\Pi_1## is the parity operator in ##x## direction. It is defined by its action in position space on a wavefunction ##\psi(x_1,x_2,x_3)## by ##\Pi_1 \psi(x_1,x_2,x_3) = \psi(-x_1,x_2,x_3)##. But this is not necessary in the present problem since you are already given by its transformation properties.

By expanding ##L_3 = x_1 p_2 - x_2 p_1## and using the properties of ##\Pi_1## as given in the question, calculate ##L_3 \Pi_1##.

Don't compare them, one is the product between operators and the other one is the application of an operator on a state.

No, it doesn't. It acts on the azimuthal coordinate instead, please review again your QM notes.

Thanks I got the first part of red box:smile:. For the remaining part, I need to show that the Hamiltonian is degenerate. By definition that means E corresponds to more than 1 eigenstate. I am not sure , but from the form of eigenstate | E,m > and the equation H | E,m > = E | E,m > , we see that m does not appear in the eigenvalue of H so I guess m can play a role here? Like E corresponds to | E,1> , | E,0> and | E,-1> ; though I don't know the correct way of saying this.
 
davon806 said:
I guess m can play a role here?
Yes in an indirect way.
To do this part, you can show that ##|E,m\rangle## and ##\Pi_1|E,m\rangle## correspond to the same energy but different ##m## values.
 
  • Like
Likes davon806
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...

Similar threads

Back
Top