MHB Simultaneous Equations Challenge II

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve for real solutions of the system of equations below:

$a(\sqrt{b}+b)=\sqrt{1-a}(\sqrt{a}+\sqrt{1-a})$

$32a(a^2-1)(2a^2-1)^2+b=0$
 
Mathematics news on Phys.org
Hint:
Try to think from the perspective of injective function and also use the trigonometric substitution for the second equation.(Nod)
 
Last edited:
Solution of other:

First equation implies $a\in (0,\,1]$ and $b\ge 0$ and may then be written as $b+\sqrt{b}=\dfrac{1-a}{a}+\sqrt{\dfrac{1-a}{a}}$.

Since $a+\sqrt{a}$ is injective, this implies $b=\dfrac{1-a}{a}$ and the second equation becomes $a\ne 0$ and $32a^2(a^2-1)(2a^2-1)^2=a-1$.

Setting $a=\cos t$, this is $\cos 8t=\cos t$ and since $a>0$, $a\in \left( \cos \dfrac{4\pi}{9},\,\cos \dfrac{2\pi}{9},\,\cos \dfrac{2\pi}{7},\,1\right)$.

Hence the 4 solutions are shown below:

$(a,\,b)=(\cos \dfrac{4\pi}{9},\,\dfrac{1}{\cos \dfrac{4\pi}{9}}-1),\,(\cos \dfrac{2\pi}{9},\,\dfrac{1}{\cos \dfrac{2\pi}{9}}-1),\,(\cos \dfrac{2\pi}{7},\,\dfrac{1}{\cos \dfrac{2\pi}{7}}-1),\,(1,\,0)$.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
19
Views
3K
Replies
2
Views
1K
Replies
4
Views
2K
Replies
41
Views
5K
Replies
3
Views
1K
Back
Top