B Sinusoidal wave function of t and x

AI Thread Summary
It is possible to characterize a sinusoidal wave in both time and spatial domains, starting with parameters like amplitude, angular velocity, and frequency. The angular velocity can be expressed in terms of frequency, which relates to wave velocity and wavelength. The wave number is defined as 2 pi divided by the wavelength, and the movement along the x-direction is represented by vt. The discussion clarifies that the focus is not on disturbances from equilibrium but rather on the evolution of the sine wave across these domains. The derivation presented is coherent and aligns with the principles of wave mechanics.
Ennio
Messages
26
Reaction score
2
TL;DR Summary
Starting from the domain of t, is it possible to express the sinef function under the domain of movement?
Greetings,

is it possible to characterize a sinusoidal wave in the domain of time and then pass into the domain of movement along x direction?
I start with: a is the amplitude of the sine function and ω is the angular velocity. t is the time. I can express the angular velocity in funct. of the frequency n. In turn, n is velocity of the wave valong x divided its wavelength. Now, 2 pi over lambda is the wave number k and vt is the movement along x.
Does my derivation make sense to you?

1661530866936.png

E.
 

Attachments

  • 1661530736287.png
    1661530736287.png
    9.2 KB · Views: 156
Physics news on Phys.org
Are you trying to describe the disturbance ##y## from equilibrium
  • for a single particle located at ##x=X_P## in a medium as time evolves? ##y(X_P,t)##
  • for the shape of a string (made up of a string of particles) at a certain time ##T_0## ? ##y(x,t=T_0)##
  • for the shape of a string (made up of a string of particles) as time evolves? ##y(x,t)##
 
robphy said:
Are you trying to describe the disturbance ##y## from equilibrium
  • for a single particle located at ##x=X_P## in a medium as time evolves? ##y(X_P,t)##
  • for the shape of a string (made up of a string of particles) at a certain time ##T_0## ? ##y(x,t=T_0)##
  • for the shape of a string (made up of a string of particles) as time evolves? ##y(x,t)##
not exactly a disturbance from equilibrium but rather the description of the sine wave evolution i nthe two domains.
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top