Solution to Hydrostatic Bearing Integration Task

  • Thread starter Thread starter mathi85
  • Start date Start date
  • Tags Tags
    Integration
mathi85
Messages
41
Reaction score
0
Hi everyone!
I would like to ask you for help with one of the tasks from my assignment. The rest of the assignment is done including some simple integration but I struggle with this one:

Task
"The total load capacity for a circular hydrostatic bearing is given as

##W=\int_0^{R_o} p_r(2πr dr) + \int_{R_o}^R p(2πr dr) ##

By expressing the radial pressure in terms of the recess pressure, and by step by step argument, show that:

##W={\frac{π}{2}}{\frac{R^2-R_o^2}{2ln(R/R_o)}}p_r ## "

I think that radial pressure in terms of recess pressure is:

##p=p_r{\frac{ln(R/r)}{ln(R/R_o)}} ##

I really cannot get my head around it. Shall I just substitute above equation for 'p'? Then I would get:

##W=\int_0^{R_o} p_r(2πr dr) + \int_{R_o}^R{\frac{p_r2πrdrln(R/r)}{ln(R/R_o)}} ##

Do I have to then sort both integrals and just add them up together?
 
Physics news on Phys.org
mathi85 said:
Hi everyone!
I would like to ask you for help with one of the tasks from my assignment. The rest of the assignment is done including some simple integration but I struggle with this one:

Task
"The total load capacity for a circular hydrostatic bearing is given as

##W=\int_0^{R_o} p_r(2πr dr) + \int_{R_o}^R p(2πr dr) ##

By expressing the radial pressure in terms of the recess pressure, and by step by step argument, show that:

##W={\frac{π}{2}}{\frac{R^2-R_o^2}{2ln(R/R_o)}}p_r ## "

I think that radial pressure in terms of recess pressure is:

##p=p_r{\frac{ln(R/r)}{ln(R/R_o)}} ##

I really cannot get my head around it. Shall I just substitute above equation for 'p'? Then I would get:

##W=\int_0^{R_o} p_r(2πr dr) + \int_{R_o}^R{\frac{p_r2πrdrln(R/r)}{ln(R/R_o)}} ##

Do I have to then sort both integrals and just add them up together?

Yes. That is exactly what the formula says.

BTW: I think the given answer is too small by a factor of 2.
 
Here is first part:

##\int_R_o^0 ##
 
mathi85 said:
Here is first part:

##\int_R_o^0 ##

Are you saying that your equation in the original post is wrong?
 
mathi85 said:
Here is first part:

##\int_R_o^0 ##
Is this what you meant to write?
$$\int_{R_0}^0$$
The LaTeX script for the above is \int_{R_0}^0. If a limit of integration is more than one character, you need to put it in braces - { }.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top