- #1
psie
- 261
- 32
- Homework Statement
- Find the values of the constant ##a## for which the problem ##y''(t)+ay(t)=y(t+\pi), \ t\in\mathbb R##, has a solution with period ##2\pi## which is not identically zero. Determine all such solutions.
- Relevant Equations
- The complex Fourier series of a ##2\pi## periodic function, namely ##\sum_{n\in\mathbb Z} c_ne^{int}##.
I've assumed ##y(t)## to be the sum of a complex Fourier series, and we get $$\sum (-n^2)c_ne^{int}+\sum ac_ne^{int}=\sum c_ne^{int}e^{in\pi},$$ which we can write as $$\sum ((-n^2)+a)c_ne^{int}=\sum (-1)^n c_ne^{int}.$$ We see here that equality holds if ##a=(-1)^n+n^2##. But how do I solve ##y''(t)+ay(t)=y(t+\pi)## when ##a=(-1)^n+n^2##. I don't think I understand the problem fully.