Solve Finite Potential Well: Schrödinger Eqn. & k=qtan(q*a)

AI Thread Summary
The discussion revolves around solving the Schrödinger equation for a finite potential well, with specific wavefunction solutions provided for different regions. The user is tasked with demonstrating that when A = 0, the equations can be simplified to k = q*tan(q*a). Initial attempts to manipulate the equations led to confusion, but further clarification revealed that the correct condition is B = 0 instead of A = 0. By substituting and simplifying the equations based on this condition, the user was able to understand the path to the desired result. The interaction highlights the importance of careful attention to conditions in quantum mechanics problems.
feynwomann
Messages
2
Reaction score
0
wjzf9cM.png


'
I've got these solutions to the Schrödinger equation (##-\frac{\hbar} {2m} \frac {d^2} {dx^2} \psi(x) + V(x)*\psi(x)=E*\psi(x)##):
x < -a: ##\psi(x)=C_1*e^(k*x)##
-a < x < a: ##\psi(x)=A*cos(q*x)+B*sin(q*x)##
x > a: ##\psi(x)=C_2*e^(-k*x)##

##q^2=\frac {2m(E+V_0)} {\hbar^2}## and ##k^2=\frac {2mE} {\hbar^2}##

In a previous exercise i showed that in order for the wavefunction to be continuous the following has to be true:
For x = -a: ##C_1*e^-(k*a)=A*cos(q*a)-B*sin(q*a)##
For x = a: ##C_2*e^-(k*a)=A*cos(q*a)+B*sin(q*a)##
and for the derived wavefunctions:
x = -a: ##k*C_1*e^-(k*a)=q*(A*sin(q*a)+B*cos(q*a))##
x = a: ##-k*C_2*e^-(k*a)=-q*(A*sin(q*a)-B*cos(q*a))##

I also know that A*B=0. So here's the question:

I'm asked to show that when A = 0, the four equations above kan be reduced to ##k=q*tan(q*a). But I'm not even sure where to start.
 
Last edited:
Physics news on Phys.org
feynwomann said:
wjzf9cM.png


'
I've got these solutions to the Schrödinger equation (##-\frac{\hbar} {2m} \frac {d^2} {dx^2} \psi(x) + V(x)*\psi(x)=E*\psi(x)##):
x < -a: ##\psi(x)=C_1*e^(k*x)##
-a < x < a: ##\psi(x)=A*cos(q*x)+B*sin(q*x)##
x > a: ##\psi(x)=C_2*e^(-k*x)##

##q^2=\frac {2m(E+V_0)} {\hbar^2}## and ##k^2=\frac {2mE} {\hbar^2}##

In a previous exercise i showed that in order for the wavefunction to be continuous the following has to be true:
For x = -a: ##C_1*e^-(k*a)=A*cos(q*a)-B*sin(q*a)##
For x = a: ##C_2*e^-(k*a)=A*cos(q*a)+B*sin(q*a)##
and for the derived wavefunctions:
x = -a: ##k*C_1*e^-(k*a)=q*(A*sin(q*a)+B*cos(q*a))##
x = a: ##-k*C_2*e^-(k*a)=-q*(A*sin(q*a)-B*cos(q*a))##

I also know that A*B=0. So here's the question:

I'm asked to show that when A = 0, the four equations above kan be reduced to ##k=q*tan(q*a). But I'm not even sure where to start.

Sure, you do. When A=0, your equations become:
  1. ##C_1 e^{-ka}= -B sin(qa)##
  2. ##C_2 e^{-ka}=-B sin(qa)##
  3. ##k C_1 e^{-ka}=q Bcos(qa))##
  4. ##-kC_2*e^{-ka}=q Bcos(qa))##
Using equation 1, you know C_1e^{-ka} = -Bsin(qa)
So replace C_1 e^{-ka} by -B sin(qa) in equation 3.

It doesn't look like it results in the same formula as you are expecting, so maybe there was a mistake somewhere.
 
  • Like
Likes feynwomann
Oh it totally makes sense now. I forgot that my teacher said there was a mistake in the exercise. It's supposed to be B = 0. I didn't think of dividing the equations (I had actually done the first step, but didn't see how I could take it further). Anyway, thanks for the help!
 
Last edited:
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top