MHB Solve for $d-b$: $a^5=b^4,\,c^3=d^2,\,c-a=19$

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Assume that $a,\,b,\,c$ and $d$ are positive integers such that $a^5=b^4,\,c^3=d^2$ and $c-a=19$.

Determine $d-b$.
 
Mathematics news on Phys.org
anemone said:
Assume that $a,\,b,\,c$ and $d$ are positive integers such that $a^5=b^4,\,c^3=d^2$ and $c-a=19$.

Determine $d-b$.

As $c^3=d^2$ So there exists x such that $c=x^2$ and $d = x^3$
Further as $a^5=b^4$ so there exists y such that $a=y^4$ and $b=y^5$
Now
c-a=19
$=> x^2-y^4=19$
$=> (x-y^2)(x+y^2)=19$
As 19 is prime and $x+y^2 > x- y^2$ we have
$x-y^2=1$ and $x+y^2=19$
Solving these we get $x=10$ and $y = 3$
So $d-b = 10^3 - 3^5 = 1000 - 243= 757$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top