- #1
DanielBW
- 7
- 0
Hello guys ! I need your help with the next problem:
---------------------------------------------------------------------
"Show that the equation:
$\dfrac{mv_0}{k}-\dfrac{m^2g}{k^2}sin\alpha \cdot ln\left[ 1+\dfrac{kv_0}{mgsin\alpha } \right]$
is equivalent to:
$\dfrac{{v_0}^2}{2gsin\alpha }$
when k tends to 0 ($k\rightarrow 0)$"
---------------------------------------------------------------------
Solving i get:
$\lim\limits_{k\rightarrow 0}\dfrac{mv_0}{k}-\lim\limits_{k\rightarrow 0}\dfrac{m^2g}{k^2}sin\alpha \cdot ln\left[ 1+\dfrac{kv_0}{mgsin\alpha } \right]$
where the second limit has the 0/0 situation, so i can use L'Hopital rule on it:
$\lim\limits_{k\rightarrow 0}\dfrac{mv_0}{k}-\lim\limits_{k\rightarrow 0}\left[ \dfrac{m^2g}{2k}sin\alpha \cdot \left(\dfrac{mgsin\alpha }{mgsin\alpha + kv_0} \right) \left(\dfrac{v_0}{mgsin\alpha }\right) \right]$
Simplifying and re-ordening i get:
$\lim\limits_{k\rightarrow 0}\dfrac{mv_0}{k} \cdot \lim\limits_{k\rightarrow 0} \left[1-\dfrac{mgsin\alpha }{mgsin\alpha +kv_0}\right]$
$\lim\limits_{k\rightarrow 0}\left[\dfrac{1}{k} \cdot \dfrac{mk{v_0}^2}{mgsin\alpha +kv_0}\right]$
$\lim\limits_{k\rightarrow 0}\left[\dfrac{m{v_0}^2}{mgsin\alpha +kv_0} \right]$
Therefore:
$\dfrac{{v_0}^2}{gsin\alpha }$
I can't find the 1/2 to show the equality... what am i doing wrong? Hope you guys can help me, i'd appreciate it !
---------------------------------------------------------------------
"Show that the equation:
$\dfrac{mv_0}{k}-\dfrac{m^2g}{k^2}sin\alpha \cdot ln\left[ 1+\dfrac{kv_0}{mgsin\alpha } \right]$
is equivalent to:
$\dfrac{{v_0}^2}{2gsin\alpha }$
when k tends to 0 ($k\rightarrow 0)$"
---------------------------------------------------------------------
Solving i get:
$\lim\limits_{k\rightarrow 0}\dfrac{mv_0}{k}-\lim\limits_{k\rightarrow 0}\dfrac{m^2g}{k^2}sin\alpha \cdot ln\left[ 1+\dfrac{kv_0}{mgsin\alpha } \right]$
where the second limit has the 0/0 situation, so i can use L'Hopital rule on it:
$\lim\limits_{k\rightarrow 0}\dfrac{mv_0}{k}-\lim\limits_{k\rightarrow 0}\left[ \dfrac{m^2g}{2k}sin\alpha \cdot \left(\dfrac{mgsin\alpha }{mgsin\alpha + kv_0} \right) \left(\dfrac{v_0}{mgsin\alpha }\right) \right]$
Simplifying and re-ordening i get:
$\lim\limits_{k\rightarrow 0}\dfrac{mv_0}{k} \cdot \lim\limits_{k\rightarrow 0} \left[1-\dfrac{mgsin\alpha }{mgsin\alpha +kv_0}\right]$
$\lim\limits_{k\rightarrow 0}\left[\dfrac{1}{k} \cdot \dfrac{mk{v_0}^2}{mgsin\alpha +kv_0}\right]$
$\lim\limits_{k\rightarrow 0}\left[\dfrac{m{v_0}^2}{mgsin\alpha +kv_0} \right]$
Therefore:
$\dfrac{{v_0}^2}{gsin\alpha }$
I can't find the 1/2 to show the equality... what am i doing wrong? Hope you guys can help me, i'd appreciate it !