Solve $\sin(\alpha + \beta)$: Answer #41

  • MHB
  • Thread starter karush
  • Start date
In summary: We can get that by multiplying both sides by:\sin(\alpha)\cdot\arccos(\frac{\pi}{2})=\frac{1}{3}And so:\arccos(\frac{\pi}{2})=\frac{\arccos(\frac{1}{3})+{\cos(\alpha)+\sin(\beta))}{2}Which is:\arccos(\frac{\pi}{2})=\arccos(\frac{1}{3}+\cos(\alpha)+\sin(\beta))=\arccos(\frac{\pi}{4}+\cos(\alpha)+\sin(\beta))
  • #1
karush
Gold Member
MHB
3,269
5
View attachment 7029

trying to do #41

\begin{align*}\displaystyle
\sin(\alpha + \beta)
&=\sin\alpha \cos \beta
+\cos \alpha \sin \beta\\
&=
\frac{1}{4}\cdot\frac{3}{1}
+\frac{\sqrt{15}}{4}\cdot \frac{\sqrt{10}}{3}
\end{align*}

ok the book answer to this was

$$f(\alpha + \beta)=\frac{1-2\sqrt{6}}{6}$$

but I couldn't derive this
 

Attachments

  • 8.3.41.PNG
    8.3.41.PNG
    6.3 KB · Views: 91
Mathematics news on Phys.org
  • #2
From the graph on the left, we have:

\(\displaystyle 2\sin(\alpha)=1\implies \sin(\alpha)=\frac{1}{2}\)-

Hence:

\(\displaystyle \cos(\alpha)=\sqrt{1-\left(\frac{1}{2}\right)^2}=\frac{\sqrt{3}}{2}\)

And from the graph on the right:

\(\displaystyle \cos(\beta)=\frac{1}{3}\)

Hence (observing the terminal side of the angle is in the 4th quadrant):

\(\displaystyle \sin(\beta)=-\sqrt{1-\left(\frac{1}{3}\right)^2}=-\frac{2\sqrt{2}}{3}\)

And so we find:

\(\displaystyle f(\alpha+\beta)=\sin(\alpha+\beta)=\sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\beta)=\frac{1}{2}\cdot\frac{1}{3}-\frac{\sqrt{3}}{2}\cdot\frac{2\sqrt{2}}{3}=\frac{1-2\sqrt{6}}{6}\)
 
  • #3
ok I had r=4 not r=2

(Headbang)ok if I can sneak another one in here

$$\displaystyle\sin\left({2\theta}\right)= \frac{1}{3}$$
$$3\sin\left({2\theta}\right) = 1$$

then ?
 
  • #4
karush said:
ok I had r=4 not r=2

(Headbang)ok if I can sneak another one in here

$$\displaystyle\sin\left({2\theta}\right)= \frac{1}{3}$$
$$3\sin\left({2\theta}\right) = 1$$

then ?

I'm assuming you are to solve for $\theta$...in which case I would observe that there are solutions in quadrant I and quadrant II, and they are symmetrical about \(\displaystyle \alpha=\frac{\pi}{2}\), and we must keep the periodicity of the sine function in mind, hence:

\(\displaystyle 2\theta=\left(\frac{\pi}{2}\pm\arccos\left(\frac{1}{3}\right)\right)+2k\pi\) where $k\in\mathbb{Z}$

And so we have:

\(\displaystyle \theta=\frac{1}{2}\left(\frac{\pi}{2}\pm\arccos\left(\frac{1}{3}\right)\right)+k\pi=\frac{\pi}{4}(4k+1)\pm\frac{1}{2}\arccos\left(\frac{1}{3}\right)\)
 
  • #5
why $\arccos\left(\frac{1}{3}\right)$ ?
 
  • #6
karush said:
why $\arccos\left(\frac{1}{3}\right)$ ?

If we have:

\(\displaystyle \sin(\alpha)=\frac{1}{3}\)

But, we want the angle between the terminal side of $\alpha$ and \(\displaystyle \frac{\pi}{2}\)...that is we want the complementary angle to $\alpha$. :)
 

FAQ: Solve $\sin(\alpha + \beta)$: Answer #41

What is the formula for solving $\sin(\alpha + \beta)$?

The formula for solving $\sin(\alpha + \beta)$ is $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$.

Can you provide an example of solving $\sin(\alpha + \beta)$?

For example, if $\alpha = \frac{\pi}{4}$ and $\beta = \frac{\pi}{6}$, then $\sin(\alpha + \beta) = \sin(\frac{\pi}{4} + \frac{\pi}{6}) = \sin(\frac{5\pi}{12}) \approx 0.9659$.

How do you solve $\sin(\alpha + \beta)$ when $\alpha$ and $\beta$ are not given in radians?

To solve $\sin(\alpha + \beta)$ when $\alpha$ and $\beta$ are given in degrees, you will need to convert them to radians first. This can be done by multiplying the degree value by $\frac{\pi}{180}$.

Is there a simplified form for $\sin(\alpha + \beta)$?

Yes, there is a simplified form for $\sin(\alpha + \beta)$. It is $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$.

Can you use the Pythagorean identity to solve $\sin(\alpha + \beta)$?

Yes, the Pythagorean identity, $\sin^2(\theta) + \cos^2(\theta) = 1$, can be used to solve $\sin(\alpha + \beta)$ by first expanding $\sin^2(\alpha + \beta)$ using the double angle formula and then simplifying using the Pythagorean identity.

Similar threads

Replies
1
Views
11K
Replies
2
Views
6K
Replies
4
Views
1K
Replies
4
Views
1K
Replies
5
Views
2K
Replies
5
Views
1K
Replies
7
Views
763
Replies
1
Views
1K
Back
Top