MHB Solve Situational Problems Involving Trigonometric Identities

AI Thread Summary
The discussion focuses on solving situational problems involving trigonometric identities, specifically determining the values of sine and cosine for a given angle. The Pythagorean theorem is applied to establish that the hypotenuse is √106, with the opposite side being -5 and the adjacent side being 9. Calculations yield that sin(θ) equals -5/√106 and cos(θ) equals 9/√106. The final expression for sin(θ) + cos(θ) is presented as (9 - 5)/√106. The thread emphasizes the importance of correctly identifying the sides of the triangle to solve the problem effectively.
ukumure
Messages
5
Reaction score
0
Hi! I am so confused about the given and what is being asked, I don't know how to solve it. This topic is solving situational problems involving trigonometric identities. Your help would be a big one for me :) Thank you so much in advance!
1.png
 
Mathematics news on Phys.org
First, we need to establish $\sin\theta$ and $\cos\theta$.
$9^2+(-5)^2=106$ (Pythagorean theorem)
so $\sin\theta$ is $\sqrt{\frac{|-5|}{106}}, \text{that is}, \left(\frac{opp}{hyp}\right)$ and $\cos\theta$ is $\frac{3}{\sqrt{106}}, \text{that is}, \left(\frac{adj}{hyp}\right)$ (recall that $\sin\theta$ is the magnitude of the opposite side of the right-angled triangle containing $\theta$ divided by the hypotenuse)

Hence $\sin\theta+\cos\theta=\frac{3+\sqrt{|-5|}}{\sqrt{106}}$.
 
Greg said:
First, we need to establish $\sin\theta$ and $\cos\theta$.
$9^2+(-5)^2=106$ (Pythagorean theorem)
so $\sin\theta$ is $\sqrt{\frac{|-5|}{106}}, \text{that is}, \left(\frac{opp}{hyp}\right)$ and $\cos\theta$ is $\frac{3}{\sqrt{106}}, \text{that is}, \left(\frac{adj}{hyp}\right)$ (recall that $\sin\theta$ is the magnitude of the opposite side of the right-angled triangle containing $\theta$ divided by the hypotenuse)

Hence $\sin\theta+\cos\theta=\frac{3+\sqrt{|-5|}}{\sqrt{106}}$.
THANK YOU SO MUCH! :)))
 
$\cos{\theta} = \dfrac{x}{r} = \dfrac{9}{\sqrt{106}}$

$\sin{\theta} = \dfrac{y}{r} = \dfrac{-5}{\sqrt{106}}$

$\cos{\theta} + \sin{\theta} = \dfrac{4}{\sqrt{106}}$

ref_tri_IV.jpg
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top