MHB Solve Situational Problems Involving Trigonometric Identities

AI Thread Summary
The discussion focuses on solving situational problems involving trigonometric identities, specifically determining the values of sine and cosine for a given angle. The Pythagorean theorem is applied to establish that the hypotenuse is √106, with the opposite side being -5 and the adjacent side being 9. Calculations yield that sin(θ) equals -5/√106 and cos(θ) equals 9/√106. The final expression for sin(θ) + cos(θ) is presented as (9 - 5)/√106. The thread emphasizes the importance of correctly identifying the sides of the triangle to solve the problem effectively.
ukumure
Messages
5
Reaction score
0
Hi! I am so confused about the given and what is being asked, I don't know how to solve it. This topic is solving situational problems involving trigonometric identities. Your help would be a big one for me :) Thank you so much in advance!
1.png
 
Mathematics news on Phys.org
First, we need to establish $\sin\theta$ and $\cos\theta$.
$9^2+(-5)^2=106$ (Pythagorean theorem)
so $\sin\theta$ is $\sqrt{\frac{|-5|}{106}}, \text{that is}, \left(\frac{opp}{hyp}\right)$ and $\cos\theta$ is $\frac{3}{\sqrt{106}}, \text{that is}, \left(\frac{adj}{hyp}\right)$ (recall that $\sin\theta$ is the magnitude of the opposite side of the right-angled triangle containing $\theta$ divided by the hypotenuse)

Hence $\sin\theta+\cos\theta=\frac{3+\sqrt{|-5|}}{\sqrt{106}}$.
 
Greg said:
First, we need to establish $\sin\theta$ and $\cos\theta$.
$9^2+(-5)^2=106$ (Pythagorean theorem)
so $\sin\theta$ is $\sqrt{\frac{|-5|}{106}}, \text{that is}, \left(\frac{opp}{hyp}\right)$ and $\cos\theta$ is $\frac{3}{\sqrt{106}}, \text{that is}, \left(\frac{adj}{hyp}\right)$ (recall that $\sin\theta$ is the magnitude of the opposite side of the right-angled triangle containing $\theta$ divided by the hypotenuse)

Hence $\sin\theta+\cos\theta=\frac{3+\sqrt{|-5|}}{\sqrt{106}}$.
THANK YOU SO MUCH! :)))
 
$\cos{\theta} = \dfrac{x}{r} = \dfrac{9}{\sqrt{106}}$

$\sin{\theta} = \dfrac{y}{r} = \dfrac{-5}{\sqrt{106}}$

$\cos{\theta} + \sin{\theta} = \dfrac{4}{\sqrt{106}}$

ref_tri_IV.jpg
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top