- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- Solve for ##x## given ##3^x=2x+2##
- Relevant Equations
- Lambert W Function
I just came across this...the beginning steps are pretty easy to follow...i need help on the highlighted part as indicated below;
From my own understanding, allow me to create my own question for insight purposes...
let us have;
##7^x=5x+5##
##\dfrac{1}{5}=(x+1)7^{-x}##
##\dfrac{1}{35}=(x+1)7^{(-x-1)}## this is clear...
then we desire our equation to be in the form;
##we^w##
then we shall have,
##-\dfrac{1}{35}=(-x-1)7^{(-x-1)}##
Let ##y=7^{(-x-1)}##
then ##\ln y=(-x-1)\ln 7##
##⇒e^{(-x-1)\ln 7}=y## then on substituting back on ##-\dfrac{1}{35}=(-x-1)7^{(-x-1)}## and multiplying both sides of the equation by ##\ln 7##
we get;
##(\ln 7)(-x-1)⋅ e^{(-x-1)\ln 7} = \dfrac {-\ln 7}{35}##
##(\ln 7)(-x-1)=W_0 \left[\frac{-\ln 7}{35}\right ]##
or
##(\ln 7)(-x-1)=W_{-1} \left[\frac{-\ln 7}{35}\right ]## how do we arrive at the required values from here? Is there a table?
let us have;
##7^x=5x+5##
##\dfrac{1}{5}=(x+1)7^{-x}##
##\dfrac{1}{35}=(x+1)7^{(-x-1)}## this is clear...
then we desire our equation to be in the form;
##we^w##
then we shall have,
##-\dfrac{1}{35}=(-x-1)7^{(-x-1)}##
Let ##y=7^{(-x-1)}##
then ##\ln y=(-x-1)\ln 7##
##⇒e^{(-x-1)\ln 7}=y## then on substituting back on ##-\dfrac{1}{35}=(-x-1)7^{(-x-1)}## and multiplying both sides of the equation by ##\ln 7##
we get;
##(\ln 7)(-x-1)⋅ e^{(-x-1)\ln 7} = \dfrac {-\ln 7}{35}##
##(\ln 7)(-x-1)=W_0 \left[\frac{-\ln 7}{35}\right ]##
or
##(\ln 7)(-x-1)=W_{-1} \left[\frac{-\ln 7}{35}\right ]## how do we arrive at the required values from here? Is there a table?
Last edited: