- #1
chwala
Gold Member
- 2,752
- 387
- Homework Statement
- ##P## is a point on the parabola given by ##x=at^2, y=2at##, where ##a## is a constant. Let ##S## be the point ##(a,0)##, ##Q## be the point ##(-a,2at)##and ##T## be the point where the tangent at ##P## to the parabola crosses the axis of symmetry of the parabola.
(a) Show that ##SP=PQ=QT=ST=at^2+a##
(b) Prove that angle ##QPT## is equal to angle ##SPT##
(c) If ##PM##is parallel to the axis of the parabola, with ##M## to the right of ##P##and ##PN##is the normal to the parabola at ##P##, show that angle ##MPN## is equal to angle ##NPS##
- Relevant Equations
- Parametric equations
My take;
Part (a);
##\dfrac{dy}{dx}=\dfrac{1}{t}##
therefore,
##y-2at=\dfrac{1}{t}(x-at^2)##
##ty-2at^2=x-at^2##
##ty=x+at^2## implying that ##T## has co-ordinates ##(-at^2,0)##.
##SP=\sqrt{(a-at^2)^2+(0-2at)^2}##
##SP=\sqrt{4a^2t^2-2a^2t^2+a^2t^4+a^2}##
##SP=\sqrt{a^2t^4+2a^2t^2+a^2}##
##SP=\sqrt{a^2t^4+a^2t^2+a^2t^2+a^2}##
##SP=\sqrt{(at^2+a)^2}##
##SP=at^2+a##
also;
##PQ=\sqrt{(-a-at^2)^2+(2at-2at)^2}##
##PQ=\sqrt{(-a-at^2)^2}=\sqrt{a^2t^4+2a^2t^2+a^2}=at^2+a##
##QT=\sqrt{(-at^2+a)^2+(2at)^2}=at^2+a##
and
##ST=\sqrt{(-at^2-a)^2}=at^2+a##
thus shown.
For part (b);
Let the midpoint of ##QS## be denoted by ##K=\dfrac{-a+a}{2},\dfrac{0+2at}{2} =(0,at)##
##KP## is the perpendicular bisector to sides ##QP## and ##SP## respectively, we can use pythagoras theorem to show that
##PK^2+KS^2=PS^2## and ##PK^2+KQ^2=QP^2## this would imply that angle ##QPT=SPT##.
that is,
##PK=
\begin{pmatrix}
0 & \\
at & \\
\end{pmatrix}-
\begin{pmatrix}
at^2 & \\
2at & \\
\end{pmatrix}=
\begin{pmatrix}
-at^2 & \\
-at & \\
\end{pmatrix}
##
##\sqrt{PK^2+KS^2}##
##\sqrt{
\begin{pmatrix}
-at^2 & \\
-at & \\
\end{pmatrix}^2+
\begin{pmatrix}
a & \\
-at & \\
\end{pmatrix}^2}=PS
##
and
##\sqrt{PK^2+KQ^2}=##
##\sqrt{
\begin{pmatrix}
-at^2 & \\
-at& \\
\end{pmatrix}^2+
\begin{pmatrix}
-a & \\
at & \\
\end{pmatrix}^2}=QP
##
since ##PS=QP## and ##PK## is the perpendicular bisector to angle ##QPS## then it follows that angle ##QPT=SPT##.
Part (a);
##\dfrac{dy}{dx}=\dfrac{1}{t}##
therefore,
##y-2at=\dfrac{1}{t}(x-at^2)##
##ty-2at^2=x-at^2##
##ty=x+at^2## implying that ##T## has co-ordinates ##(-at^2,0)##.
##SP=\sqrt{(a-at^2)^2+(0-2at)^2}##
##SP=\sqrt{4a^2t^2-2a^2t^2+a^2t^4+a^2}##
##SP=\sqrt{a^2t^4+2a^2t^2+a^2}##
##SP=\sqrt{a^2t^4+a^2t^2+a^2t^2+a^2}##
##SP=\sqrt{(at^2+a)^2}##
##SP=at^2+a##
also;
##PQ=\sqrt{(-a-at^2)^2+(2at-2at)^2}##
##PQ=\sqrt{(-a-at^2)^2}=\sqrt{a^2t^4+2a^2t^2+a^2}=at^2+a##
##QT=\sqrt{(-at^2+a)^2+(2at)^2}=at^2+a##
and
##ST=\sqrt{(-at^2-a)^2}=at^2+a##
thus shown.
For part (b);
Let the midpoint of ##QS## be denoted by ##K=\dfrac{-a+a}{2},\dfrac{0+2at}{2} =(0,at)##
##KP## is the perpendicular bisector to sides ##QP## and ##SP## respectively, we can use pythagoras theorem to show that
##PK^2+KS^2=PS^2## and ##PK^2+KQ^2=QP^2## this would imply that angle ##QPT=SPT##.
that is,
##PK=
\begin{pmatrix}
0 & \\
at & \\
\end{pmatrix}-
\begin{pmatrix}
at^2 & \\
2at & \\
\end{pmatrix}=
\begin{pmatrix}
-at^2 & \\
-at & \\
\end{pmatrix}
##
##\sqrt{PK^2+KS^2}##
##\sqrt{
\begin{pmatrix}
-at^2 & \\
-at & \\
\end{pmatrix}^2+
\begin{pmatrix}
a & \\
-at & \\
\end{pmatrix}^2}=PS
##
and
##\sqrt{PK^2+KQ^2}=##
##\sqrt{
\begin{pmatrix}
-at^2 & \\
-at& \\
\end{pmatrix}^2+
\begin{pmatrix}
-a & \\
at & \\
\end{pmatrix}^2}=QP
##
since ##PS=QP## and ##PK## is the perpendicular bisector to angle ##QPS## then it follows that angle ##QPT=SPT##.
Last edited: