Solve TOV for Non-Constant Density Star - Friends Help Needed!

shadi_s10
Messages
87
Reaction score
0
Dear friends,

Does anyone know how we can solve the TOV equations for a non constant density?
In all the references, I just saw the solution for a constant density.
Thanks in advance for the help :)
 
Physics news on Phys.org
An equation of state and boundary conditions also are needed. As is often the case with (systems of ) differential equations, few analytical solutions are know. From page 293 of "General Relativity: Am Introduction for Physicists" by Hobson, Efstathiou, and Lasenby:

"Very few exact solutions are known for realistic equations of state, and so in practice the system of equations is integrated numerically on a computer. The procedure is to ‘integrate outwards’ from r = 0 (in practice in small radial steps of size ##\delta##r) until the pressure drops to zero. This condition defines the surface r = R of the star, since otherwise there would be an infinite pressure gradient, and hence an infinite force, on the material elements constituting the outer layer of the star"
 
  • Like
Likes bcrowell and Mentz114
George Jones said:
An equation of state and boundary conditions also are needed..."
Thanks for your explanations.
Is using general relativity in order to get to the pressure inside a star OK?
I am doing some calculations and so far I think the gravitational potential would be quit different.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...
Back
Top