- #1
tmt1
- 234
- 0
I am working on this question:
∫ [(3+ lnx)^2 (2-ln x)] / (4x) dx
My answer is:
18/4 [ 3 (ln x^2/2) + 4 (ln x^3/3) - ln x^4/4 ] + C
But the answer from the solutions is (5/12) (3+ ln x)^3 - (1/16)(3+lnx)^4 + C
Where did I mess up?
∫ [(3+ lnx)^2 (2-ln x)] / (4x) dx
let u =ln x
du/dx = 1/x
dx= du * x
substitute u into original equation,
∫ [(3+ u)^2 (2- u)] * (1/4x) * x du
x's cancel out
∫ [(3+ u)^2 (2- u)] * (1/4) du
remove constant
(1/4) ∫ [(3+ u)^2 (2- u)] du
expand
1/4 ∫ (9 + 6u + u^2) (2-u) du
1/4 ∫ 18 - 9u + 12u - 6u^2 + 2u^2 -u^3 du
simplify
1/4 ∫ 18 + 3u + 4u^2 - u^3 du
18/4 ∫ 3u + 4u^2 - u^3 du
integrate
18/4 [ 3 ∫ u du + 4 ∫ u^2 du - ∫ u^3 du ]
= 18/4 [ 3 (u^2/2) + 4 (u^3/3) - u^4/4 ] + c
replace u=lnx
= 18/4 [ 3 (ln x^2/2) + 4 (ln x^3/3) - ln x^4/4 ] + c