Solving Bohr's Model for Muonic Atoms

  • Thread starter Thread starter HasuChObe
  • Start date Start date
  • Tags Tags
    Atoms Model
AI Thread Summary
The discussion focuses on applying Bohr's model to muonic atoms, specifically a system with a lead nucleus and a negative muon. The user seeks assistance in predicting the energy of a photon emitted during a transition from the first excited state to the ground state, as well as calculating the radius of the smallest Bohr orbit for the muon bound to the lead nucleus. It highlights the muon's unique properties, such as its mass being 207 times that of an electron, which affects the calculations. The user references external resources for guidance but still struggles with the problem. The thread emphasizes the relevance of Bohr's model in understanding muonic atoms and their energy transitions.
HasuChObe
Messages
31
Reaction score
0
Hi; I got a question related to Bohr's model but I'm not sure how to interpret the equations given what I know. Here's the question, sorry if it's a long read:

The Bohr model correctly predicts the main energy levels not only for atomic hydrogen but also for other "one-electron" atoms where all but one of the atomic electrons has been removed, such as in He+ (one electron removed) or Li++ (two electrons removed).

(a) The negative muon (–) behaves like a heavy electron, with the same charge as the electron but with a mass 207 times as large as the electron mass. As a moving muon– comes to rest in matter, it tends to knock electrons out of atoms and settle down onto a nucleus to form a "one-muon" atom. For a system consisting of a lead nucleus (Pb208 has 82 protons and 126 neutrons) and just one negative muon, predict the energy (in electron volts) of a photon emitted in a transition from the first excited state to the ground state. The high-energy photons emitted by transitions between energy levels in such "muonic atoms" are easily observed in experiments with muons.

(c) Calculate the radius of the smallest Bohr orbit for a – bound to a lead nucleus (Pb208 has 82 protons and 126 neutrons). Compare with the approximate radius of the lead nucleus (remember that the radius of a proton or neutron is about 10–15 m, and the nucleons are packed closely together in the nucleus).

Appreciate any help =]
 
Physics news on Phys.org
Start here

http://hyperphysics.phy-astr.gsu.edu/hbase/hyde.html

and then follow the link to the "Bohr model" in the first line. Scroll to the "Classical Electron Orbit" and "Bohr Orbit" panels. Everything you need about the mass of the orbiter, the charge of the nucleus, the quantization of energy levels, and the energy of photons is there.
 
I was wondering if someone could help me with this problem, I was looking it over and still don't understand how to solve it.
 
please someone.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top