Solving Canonical Question: Find Q, P for A

  • Thread starter Thread starter franky2727
  • Start date Start date
franky2727
Messages
131
Reaction score
0
got stuck on this question but had a pritty good bash at it and might possibly be getting close to the answer

right so the question in full is let A={(1,2,1),(2,4,2),(3,6,3)}

find r and real invertible matrices Q and P such that Q-1AP={(Ir,0)(0,0)
where each zero denotes a matrix of zeros (not nessessarily the same size in each case)

Paying special attension to write down the bases of r3 with respect to which Q-1AP represents the mapping x->Ax

right now I've started off by row and column reducing A to get {(1,0,0)(0,0,0)(0,0,0)}
and then by applying the row and column opperations to the 3x3 and 3x3 respectivly Identity matrices i ended up with Q-1={(1,0,0)(-2,1,0)(-3,0,1)} Q={(1,0,0)(1/2,1,0)(1-3,0,1)} and finaly p={(1,-2,-1)(0,1,0)(0,0,1) which did indeed satisfy the equation Q-1AP=I1

now the next part of the question i didn't/don't really understand "Paying special attension to write down the bases of r3 with respect to which Q-1AP represents the mapping x->Ax"

however i looked at what i believe to be a similar question on my past homework questions (this question is from a previous exam paper so i don't have answers) and came to the conclusion (not sure if this is right or not this is my question to you really) that i was being asked to find a basis for my matrix A and then a basis for my canonical so this would just be {(1,2,1)} and {(1,0,0)} respectivly? I'm pritty sure this is wrong as it just seems too easy althought i believe i am on the right lines, could someone please elaberate on my findings. thanks
 
Physics news on Phys.org
does no one understand this or something?
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top