MHB Solving for $k$: When Does $P(P(x))$ Have 3 Real Roots?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Roots
AI Thread Summary
For the polynomial \( P(x) = x^2 + 6x + k \), the discussion focuses on determining the values of \( k \) for which \( P(P(x)) \) yields exactly three distinct real roots. The derived function \( G(y) = P(P(y)) \) is expressed as \( y^4 + (2k - 12)y^2 + h(k) \), with \( h(k) = k^2 - 11k + 27 \). It is noted that \( G(y) \) is symmetrical about \( y = 0 \) and that \( G'(0) = 0 \). The analysis reveals that only the smaller root of \( h(k) \) results in three roots for \( G(y) \), while the larger root leads to a double root scenario. The conclusion emphasizes the critical role of the smaller root of \( h(k) \) in achieving the desired number of roots in \( P(P(x)) \).
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $P(x)=x^2+6x+k$ for all real $x$, where $k$ is some real number. For what values of $k$ does $P(P(x))$ have exactly 3 distinct real roots?
 
Mathematics news on Phys.org
WLOG: Let x=y-3

G(y)=P(P(y))= y^4+(2k-12)y^2+h(k)
where h(k) = k^2-11k+21

Note 1: G(y) symmetrical about y=0
Note 2: G'(0)=0

Therefore: Answer is root(s) of h(k)
 
Last edited:
My solution:

We find:

$$P(P(x))=\left(x^2+6x+k\right)^2+6\left(x^2+6x+k\right)+k=x^4+12x^3+2kx^2+42x^2+12kx+36x+k^2+7k$$

And so we find the discriminant is:

$$256k^4-7424k^3+78336k^2-352512k+559872=256(k-9)^2\left(k^2-11 k+27\right)$$

In order for there to be 3 distinct real roots, we must have 4 real roots, two of which are repeated, and so the discriminat must be zero.

Thus, we have the candidates:

$$k\in\left\{9,\frac{11\pm\sqrt{13}}{2}\right\}$$

When $k=9$, we find a repeated set of complex conjugate roots. When $$k=\frac{11+\sqrt{13}}{2}$$, we find that we have a repeated real root and a pair of complex conjugate roots.

But, when $$k=\frac{11-\sqrt{13}}{2}$$, we find we have the 3 distinct real roots:

$$x\in\left\{-3,-3\pm\sqrt{1+\sqrt{13}}\right\}$$
 
RLBrown said:
WLOG: Let x=y-3

G(y)=P(P(y))= y^4+(2k-12)y^2+h(k)
where h(k) = k^2-11k+21

Note 1: G(y) symmetrical about y=0
Note 2: G'(0)=0

Therefore: Answer is root(s) of h(k)

G(y)=P(P(y))= y^4+(2k-12)y^2+h(k)
where h(k) = k^2-11k+27 <--- Typo correction

Note 1: G(y) symmetrical about y=0
Note 2: G'(0)=0

Therefore: Answer is root(s) of h(k)

As MarkFL points out, only the smaller root of h(k) produces 3 roots in G(y) and P(P(x)).
The larger root of h(k) produces only one double root in G(y) and P(P(x)).
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top