MHB Solving for specific variable when solving a recurrence equation

AI Thread Summary
The discussion focuses on solving a recurrence equation of the form T(n) = T((n-1)/2) + 2C. The user attempts to unroll the equation using a top-down approach to express T(n) in terms of k, leading to T((n-k)/2^k) + 2kC. The challenge arises in solving for k, particularly with the equation n-k = 2^k, which complicates the process. Another participant suggests re-evaluating the unrolling to T((n-2^k+1)/2^k) + 2kC for potentially clearer insights. The conversation highlights the complexities of manipulating recurrence relations and finding specific variable solutions.
ATroelstein
Messages
15
Reaction score
0
I have the following recurrence equation, where C is just some constant:
$$
T(n) = 0, n = 1\\
T(n) = T(\frac{n-1}{2}) + 2C, n > 1
$$

Using a top-down approach to unrolling the equation to find the pattern, I get:

$$
T(n) = T(\frac{n-k}{2^{k}}) + 2kC
$$

Now I want to solve for k and associate it with n to finish solving the equation without k in it. In order to get:

$$
T(\frac{n-k}{2^{k}}) = T(1)
$$

Then:

$$
n-k = 2^{k}
$$

The problem I am running into is that I'm having trouble solving this for k. I have worked through many other examples where:

$$
n = 2^{k}
$$

and then I know:

$$
k = log_2 n
$$

But having the n-k is making it difficult for me to solve for k. Thanks in advance.
 
Physics news on Phys.org
ATroelstein said:
Using a top-down approach to unrolling the equation to find the pattern, I get:

$$
T(n) = T(\frac{n-k}{2^{k}}) + 2kC
$$

Hi ATroelstein! :)

The equation you're trying to solve is not very solvable.

But perhaps you could redo the unrolling of the equation and get:
$$
T(n) = T\left(\frac{n-2^k+1}{2^k}\right) + 2kC
$$
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...

Similar threads

Back
Top