Solving for the Speed of a Comet in an Elliptical Orbit

AI Thread Summary
The discussion focuses on calculating the speed of a comet in an elliptical orbit at different distances from the sun. The initial speed is given as 2.3×10^4 m/s at a distance of 2.7×10^11 m, and the challenge is to find the speed at 4.3×10^10 m. Various methods were attempted, including conservation of angular momentum and energy, but the user struggled to arrive at the correct answer. The vis-viva equation was suggested as a valid approach, emphasizing that energy conservation principles are key to solving the problem. Concerns were raised about the initial distance and speed values, suggesting a possible error in the provided data.
ccsmarty
Messages
17
Reaction score
0

Homework Statement



Comets travel around the sun in elliptical orbits with large eccentricities. If a comet has speed 2.3×10^4 m/s when at a distance of 2.7×10^11 m from the center of the sun, what is its speed when at a distance of 4.3×10^10 m.


Homework Equations



I tried using v = ((G*M) / r) ^ 0.5, but I'm not sure if that will work with this problem.

The Attempt at a Solution



* I tried using conservation of angular momentum (per a tutor's advice), but didn't get the right answer
* I tried using Kepler's 2nd Law (area sweep) because the area that is swept out is the same all around the circle, but again no luck
* I tried using conservation of energy
* I used the equation that I listed above and solved for the mass of the comet by plugging in the 1st velocity and radius. Then I used the mass I came up with, along with the 2nd radius and solved for the velocity (v = 5.8*10^4 m/s). I inputted this answer into my online homework site, and it said that I was close, but not right.

Can someone please help me figure out where I went wrong??
Thanks in advance.
 
Physics news on Phys.org
ccsmarty said:
I tried using v = ((G*M) / r) ^ 0.5, but I'm not sure if that will work with this problem.

This is the circular velocity for an orbit of radius r, so this pretty definitely won't work for the elliptical orbit of a comet.

I tried using conservation of energy...

This is the only approach that will help you. How did you use it? What is the energy that is conserved as the comet travels on its orbit?
 
This is what I did with the energy methods:

cometproblem2.jpg


But this answer is wrong.
 
Last edited:
The calculation appears to be all right for the numbers given. The speed of the comet increases by a modest factor of about three for having gotten about six times closer to the Sun.

But I can't help wondering if the distances are given correctly. The comet is said to start at a distance of 2.7·10^11 m , which is only about 1.8 AU, with a speed of 23 km/sec. (The final distance of 4.3·10^10 m is about 0.29 AU, which is credible for a perihelion distance.) That initial speed seems suspiciously low for that distance on a cometary orbit. Might the starting distance be more like 18 AU?
 
ccsmarty said:
7.6*104m/s
But this answer is wrong.

The vis-viva equation yields the same answer (not surprising, since the vis-viva equation follows directly from conservation of energy.) What makes you think the answer is wrong?
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...

Similar threads

Replies
13
Views
859
Replies
3
Views
2K
Replies
3
Views
2K
Replies
15
Views
1K
Replies
6
Views
8K
Replies
1
Views
2K
Back
Top