Solving Integrals of Problem Homework Statement

  • Thread starter Thread starter IncognitoSOS
  • Start date Start date
  • Tags Tags
    Integral
IncognitoSOS
Messages
7
Reaction score
0

Homework Statement


I have two problems that I am stuck on, any help would be appreciated
1. the Integral of (1+2t^8)^20 * t^7 dt
2. the Integral from 0 to 1 of dx/(x*ln(X^5))



Homework Equations





The Attempt at a Solution


for 1. I know that to something like this with a lower power you should multiply it out and then use the power rule, but am I stuck multiplying out 1+2t^8 twenty times?
for 2. Calculator gave me various errors. I suspect that the answer is zero, but I'm not sure.

Thanks to anyone who decides to post
 
Physics news on Phys.org
For number 1, have you tried u-substitution? Whenever you have an integral that you can't immediately figure out how to integrate, you should always try u-substitution.

For part 2, you can simplify ln(x^5) into 5lnx. Can you find the indefinite integral from here?
 
for question 2,
You've got a problem with this question which u will find out once u find the indefinite integral. x can't equal to either 1 or 0.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top