Solving Oscillating Systems Homework: Angular Frequency & Velocity

AI Thread Summary
The discussion revolves around solving a physics homework problem involving a rod oscillating in simple harmonic motion. The derived angular frequency is confirmed as ω = sqrt(27k/7m), yielding a value of 10.5 s^-1. For part c, the position function is established as θ(t) = Acos(ωt), requiring substitution of the previously found ω. In part d, the angular velocity function is calculated as ω(t) = -Aωsin(ωt), leading to a computed value of -1.56 rad/s, which conflicts with the answer sheet's -0.735 rad/s. The consensus suggests a possible typo in the answer sheet, affirming the correctness of the calculations presented.
Adriano25
Messages
40
Reaction score
4

Homework Statement


In the drawing below, a rod of length L and mass M is pivoted a distance L/4 from one end. The pivot attaches the rod to a smooth horizontal table, allowing the rod to rotate frictionlessly in a horizontal plane (so that gravity does not affect the motion). The end furthest from the pivot is attached to an unstretched spring, and the other end of the spring is attached to a wall. The rod is rotated counterclockwise through 0.30 rad and released at time t = 0.

(a) Starting from a fundamental equation for rotational motion, derive an equation which shows that the oscillation of the rod is an example of simple harmonic motion.
(b) By inspection of the equation you derived in part (a), write down an equation for the angular frequency of the rotation.

(c) If M = 0.70 kg, k = 20.0 N/m, and L = 0.40 m, write down an equation which gives the angle between the rod and its original orientation as a function of time. Give numerical values for any parameters appearing in your expression.
(d) What is the angular velocity of the rod 0.25 s after its release?

Screen Shot 2016-12-13 at 8.31.23 PM.png

Homework Equations



I worked through part a) and b) and I got that the angular frequency is equal to:
ω=sqrt(27k/7m)

k=spring constant
m=mass of the rod

This answer agrees with the answer sheet. I'm just having troubles for part c) & d)

The Attempt at a Solution


[/B]
ω=sqrt[(27)(20N/m)/(7)(0.7kg)]
ω = 10.5 s-1

For part c)
I found the equation for position as a function of time to be:
θ(t) = Acos(ωt)
In which we would need to substitute ω for the values we found in part b)

For part d)
The angular velocity as a function of time is:
ω(t) = -Aωsin(ωt)

Thus, plugging in all the values should give me the angular velocity at 0.25 sec.
ω(t) = -(0.3rad)(10.5s-1)sin(10.5s-1*(0.25s)
ω(t) = -1.56 rad/s

The answer sheet provides an answer of -0.735 rad/s.
Am I doing something wrong or is this result in the answer sheet incorrect?

Thank you
 
Physics news on Phys.org
Your work looks correct to me. I get the same numbers as you.
 
  • Like
Likes Adriano25
Great. Thank you. It's probably a typo then on the answer sheet. Again, thanks and thank you all the people on this forum for helping me get through my physics course.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top