Solving Solid Disk Rolling Up Incline: Find Height h

AI Thread Summary
A solid disk of mass m and radius R rolls up an incline without slipping, and the goal is to determine the height h it reaches based on its initial velocity v. The kinetic energy of the disk is converted to potential energy as it ascends, leading to the equation 0.5Iω² + mv² = mgh. After substituting the moment of inertia and relating linear and angular velocities, the final expression for height is derived as h = (5/4)(v²)/g. The discussion emphasizes the importance of understanding the relationship between linear velocity v and angular velocity ω in this context. The final answer indicates that the disk rolls up to a height proportional to the square of its initial velocity.
NathanLeduc1
Messages
36
Reaction score
0

Homework Statement


A solid disk of mass m and radius R rolls without slipping with a velocity v. Assuming it doesn't slip, how far vertically will it roll up an incline?

Homework Equations


I=0.5mr2
E=0.5Iω2
KE=0.5mv2
PE=mgh

The Attempt at a Solution


I'm thinking that we need to find the height h when the kinetic energy is converted to potential energy. So:
0.5Iω2+mv2=mgh
0.5*0.5mr2ω2+mv2=mgh
0.25r2ω2+v2=gh
h=(0.25r2ω2+v2)/g
Is that right? I feel weird because I still have ω in there.
 
Physics news on Phys.org
NathanLeduc1 said:

Homework Statement


A solid disk of mass m and radius R rolls without slipping with a velocity v. Assuming it doesn't slip, how far vertically will it roll up an incline?

Homework Equations


I=0.5mr2
E=0.5Iω2
KE=0.5mv2
PE=mgh

The Attempt at a Solution


I'm thinking that we need to find the height h when the kinetic energy is converted to potential energy. So:
0.5Iω2+mv2=mgh
0.5*0.5mr2ω2+mv2=mgh
0.25r2ω2+v2=gh
h=(0.25r2ω2+v2)/g
Is that right? I feel weird because I still have ω in there.
What's the relationship between v and ω ?
 
Ah, either you're a genius or I'm dumb. Probably both. Thank you.

I got a final answer of (1.2*v^2)/g = h.
 
Oops, 1.25... ((5/4)(v^2))/g = h
 
NathanLeduc1 said:
Ah, either you're a genius or I'm dumb. Probably both. Thank you.
Probably neither.

I considered a lengthier reply to your Original Post, but then though I'd see what you could do with a fairly subtle hint/question. From that, you completed the exercise. I commend you for that.

You might be surprised at how many people need to be led by the nose, step-by-step to an answer.

I got a final answer of (1.2*v^2)/g = h.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top