MHB Solving the Time Needed for A & B to Complete a Job Alone

AI Thread Summary
A's work rate is three times that of B, and after working together for 4 hours, A completes the remaining job in 2 hours. The equation derived indicates that B would take approximately 7.33 hours to finish the job alone. In a separate scenario, A and B can complete a job together in 6 days, with A working twice as fast as B. The calculations suggest B would take 9 days alone, leading to confusion since A should take less time than B, indicating a misunderstanding in the setup of the problem. Clarification on the rates and time taken is needed to resolve the discrepancies.
paulmdrdo1
Messages
382
Reaction score
0
1. A’s rate of doing work is three times that of B. On a given day A and B work together for 4 hours; then B is called away and A finishes the rest of the job in 2 hours. How long would it take B to do the complete job alone?

if I let x = B's rate of work and 3x = A's rate of work, I'll have this equation,

$\displaystyle 4\left(\frac{1}{x}+\frac{1}{3x}\right)+2\frac{1}{x}=1$

then, $x=7\frac{1}{3}$ and $3x=22$ is this correct?

2. A and B working together can complete a job in 6 days. A works twice as fast as B. How
many days would it take each of them, working alone, to complete the job?

let x = required time for B to finish a job alone, 2x = required time for A to finish a job alone

$\displaystyle 6\left(\frac{1}{x}+\frac{1}{2x}\right)=1$

the answer is x = 9 days for B, and 2(9)= 18 days for A.

but this doesn't make sense. if A is twice as fast as B it will take A lesser time to complete a job than B.

please help.
 
Last edited:
Mathematics news on Phys.org
Hello, paulmdrdo!

1. A’s rate of doing work is three times that of B. On a given day A and B work together for 4 hours, then B is called away and A finishes the rest of the job in 2 hours.
How long would it take B to do the complete job alone?

if I let x = B's rate of work and 3x = A's rate of work, I'll have this equation,

$\displaystyle 4\left(\frac{1}{x}+\frac{1}{3x}\right)+2\frac{1}{x}=1$

then, $x=7\frac{1}{3}$ and $3x=22$ is this correct?
Are you sure you know what "rate of work" means?

You have: A's rate of work is 22.
What does that mean?

Does it take 22 hours for A to do the job?
Does he get $22 per hour?

Check the original question.
And note that you didn't answer it.
2. A and B working together can complete a job in 6 days.
A works twice as fast as B.
How many days would it take each of them, working alone,
to complete the job?

let x = required time for B to finish a job alone,
2x = required time for A to finish a job alone.
. So A takes twice as long?

$\displaystyle 6\left(\frac{1}{x}+\frac{1}{2x}\right)=1$

the answer is x = 9 days for B, and 2(9)= 18 days for A.

but this doesn't make sense. if A is twice as fast as B it will take A lesser time to complete a job than B.

please help.
Look at what you wrote.

You said A takes twice as long as B.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
1
Views
2K
Replies
1
Views
1K
Replies
5
Views
2K
Replies
3
Views
2K
Replies
4
Views
11K
Back
Top