Solving Two Boxes & Friction Motion Problem

  • Thread starter Thread starter JoeTrumpet
  • Start date Start date
  • Tags Tags
    Friction
AI Thread Summary
The discussion revolves around solving a physics problem involving two stacked boxes and their motion under friction. The key point is that the friend's method incorrectly assumes the applied force equals the static friction, leading to a flawed equation that does not account for the combined mass of both boxes. The correct approach involves calculating the net force by considering the maximum static friction and subtracting the kinetic friction acting on the lower box. This net force is then used to determine the acceleration of the system, which is essential for finding the time taken to move a distance of 4.0 m without the top box sliding. Understanding the correct application of forces and friction is crucial for solving this problem accurately.
JoeTrumpet
Messages
43
Reaction score
0
I understand how to get the question right, but my friend posed an alternate method that is wrong and I was wondering why his method doesn't work.

Homework Statement


The coefficient of static friction is 0.75 between two blocks stacked on one another. The coefficient of kinetic friction between the lower block and the floor is 0.20. Force F vector acting on the upper block to the right causes both blocks to cross a distance of 4.0 m, starting from rest. What is the least amount of time in which this motion can be completed without the top block sliding on the lower block?

The upper box is 4kg and the lower box is 3kg.

Homework Equations


Upper box: Fxtotal = F - fs = m1*a (my guess is I made a mistake here since it wasn't pertinent to my solution)
Lower box: Fxtotal = fs - fk = m2*a

where a1 = a2 = a because of motion together.

Upper box: Fytotal = N = m1*g
Lower box: Fytotal = N = m1*g + m2*g

The Attempt at a Solution


I simply solved the lower equation for a and plugged it into the proper kinematic equation. However, my friend wrote from intuition F - fk = (m1 + m2)*a, which happens to be a combination of my two Fxtotal equations, and said that to maximize the distance F would have to equal fs, thus getting fs - fk = (m1 + m2)*a, which clearly would yield a response different from mine. I was wondering if anyone could clear up for us why it's wrong. I figure it has to either do with his assumption that F = fs or with my first equation and his overall equation (or both).

Thanks!
 
Physics news on Phys.org
JoeTrumpet said:
I understand how to get the question right, but my friend posed an alternate method that is wrong and I was wondering why his method doesn't work.

Homework Statement


The coefficient of static friction is 0.75 between two blocks stacked on one another. The coefficient of kinetic friction between the lower block and the floor is 0.20. Force F vector acting on the upper block to the right causes both blocks to cross a distance of 4.0 m, starting from rest. What is the least amount of time in which this motion can be completed without the top block sliding on the lower block?

The upper box is 4kg and the lower box is 3kg.

Homework Equations


Upper box: Fxtotal = F - fs = m1*a (my guess is I made a mistake here since it wasn't pertinent to my solution)
Lower box: Fxtotal = fs - fk = m2*a

where a1 = a2 = a because of motion together.

Upper box: Fytotal = N = m1*g
Lower box: Fytotal = N = m1*g + m2*g

The Attempt at a Solution


I simply solved the lower equation for a and plugged it into the proper kinematic equation. However, my friend wrote from intuition F - fk = (m1 + m2)*a, which happens to be a combination of my two Fxtotal equations, and said that to maximize the distance F would have to equal fs, thus getting fs - fk = (m1 + m2)*a, which clearly would yield a response different from mine. I was wondering if anyone could clear up for us why it's wrong. I figure it has to either do with his assumption that F = fs or with my first equation and his overall equation (or both).

Thanks!

Your equation on the lower box overlooks that whatever acceleration there is must include the mass of both boxes.

The clearer way to view it for me is to look at what the maximum force may be applied. And that is simply .75*m1*g

From that you subtract the frictional force which is the combined weight times .2.

So the net force available then is .75*m1*g - .2*g*(m1 + m2)
That in turn equals the force available to accelerate the two boxes as a system, namely

.75*m1*g - .2*g*(m1 + m2) = a * (m1 + m2)

Then figure your time the usual way with kinematics.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top