I Spatially Homogeneous Scalar Field on Spacetime: Showing $\nabla^2 f$

  • I
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Mean
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,098
Reaction score
1,385
If ##f## is a "spatially homogeneous" scalar field on spacetime ##ds^2 = dt^2 - a^2(t) \delta_{ij} dx^i dx^j## then show that ##\nabla^2 f = \ddot{f} + 3H \dot{f}##. Should be easy if I knew what the condition on ##f## is, i.e. ##\nabla^2 f = \partial_{\mu} \partial^{\mu} f = \ddot{f}- a^{-2}(t) \delta^{ij} \partial_i \partial_j f = \dots##?
 
Physics news on Phys.org
Spatially homogeneous = does not depend on spatial position. In other words, ##f## is a function of ##t## only.
 
  • Like
Likes FactChecker, vanhees71 and ergospherical
I messed up the double covariant, should be:\begin{align*}
\nabla^2 f &= \nabla_{\mu}(\partial^{\mu} f) \\
&= \partial_{\mu} \partial^{\mu} f + g^{\nu \rho} \Gamma_{\mu \nu}^{\mu} \partial_{\rho} f \\
&= \partial_t^2 f + 3H \partial_t f
\end{align*}(##\Gamma_{0i}^{j} = H\delta^{j}_{i}##)
 
Indeed. Only the time derivatives survive since the field only depends on t. Then it is just a matter of finding the appropriate trace of Christoffel symbols.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top