Special relativity- Uniform circular motion.

AI Thread Summary
The discussion revolves around calculating the time elapsed between two synchronized clocks performing uniform circular motion in opposite directions. The initial approach involved converting trajectories into proper time and calculating 4-velocities, but it was deemed overly complex. A simpler method was suggested, focusing on the inertial frame of reference to determine the proper time interval between instances when both clocks pass through a specific point. The key takeaway is that the problem can be solved more straightforwardly by considering the inertial observer's perspective rather than complicating it with the moving clocks' frames. This clarification significantly simplifies the calculations involved.
Scherejg
Messages
5
Reaction score
0

Homework Statement


Imagine two clocks that both perform uniform circular motion of radius a in the x-y plane, but in opposite directions: xμ(u) ={t, a cos(ωt),±a sin(ωt), 0}. Suppose these clocks are synchronized to agree when they are coincident at x = a at t = 0. How much time elapses until the next time the clocks are at x = a, as seen by each clock as well as by the inertial observer whose time is labelled by t?

Homework Equations


xμ(u) ={t, a cos(ωt),±a sin(ωt), 0}
xσ(u)= {t,0,0,0}


The Attempt at a Solution


The trajectories are symmetrical, so I only need to calculate the proper time elapsed for in one of the moving reference frames and it should be the same for the other.
First I converted each trajectory into its proper time. I set t=γτ where τ=tau

xμ(u) ={γτ, a cos(ωγτ),±a sin(ωγτ), 0}

Then I wanted the 4-velocities so I could determine how the opposite observer looks in one of the moving reference frames.

dxμ(u)/dτ =γ{1, -aωsin(ωγτ),±aωcos(ωγτ), 0}. The γ and τ are different depending on the trajectory.
I then subtracted the velocity vectors from each other.

xΩ+-{1, -aωsin(ωγ+τ+)-aωsin(ωγ-τ-),aωcos(ωγ+τ+)-aωcos(ωγ-τ-), 0}

So that equation is what the observer moving in the +sin direction would see in his reference frame for the observer moving in -sin direction. Now I need to determine how much time elapses between t=0 and the next time they meet.

I think this is at points where τ+-? This is where I am confused. Is my reasoning good so far?
 
Physics news on Phys.org
Sherejg,

Welcome to Physics Forums.

It seems to me that this problem is a lot simpler than the way you are approaching it. From the problem statement, it appears that the motion of the two clocks is being described as reckoned from the inertial (stationary) frame of reference. It is easiest to do all the calculations as reckoned from this frame of reference. All you need to do is determine the proper time interval (of the clocks) between successive instances that each clock passes through the point a,0 (in the inertial frame). The differential of proper time for the traveling clocks is given by

(d\tau)^2= (dt)^2(1-(\frac{dx}{cdt})^2-(\frac{dy}{cdt})^2)=(\frac{dt}{\gamma})^2

The two clocks and and observers in the stationary frame of reference all agree on the simultaneity of the events when the two clocks meet up.

Chet
 
Okay, so I think I misread the problem. Your equation gives the proper time elapsed for a circular moving clock of uniform speed in reference to an inertial observer. I thought I also needed to use one of the clocks as an observer with a uniform circular motion reference frame, and try to discover the time elapsed in his frame of the other clock. But its really asking for the time in inertial observer frame compared to proper time. Thanks for clearing that up! So much easier now haha.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top