- #1
Master1022
- 611
- 117
- Homework Statement
- For an undirected graph with affinity matrix (i.e. weighted adjacency matrix) ##A##, how can we determine a good cluster using eigenvalues and eigenvectors.
- Relevant Equations
- Eigenvectors and eigenvalues
Hi,
I was reading through some slides about graph clustering. In the slides was a very short discussion about 'eigenvectors and segmentation'. I don't quite understand where one of the formulae comes from.
Context: We have some undirected graph with an affinity matrix (i.e. weighted adjacency matrix) ##A##. The slide poses the question: What is a good cluster?
It then says: "The element associated with the cluster should have large values connecting one another in the affinity matrix." and then quotes the following formula:
[tex] \mathbf{w}_n ^T A \mathbf{w} [/tex]
where it defines ##\mathbf{w}_{n} ^ T ## = association of element ##i## to cluster ##n##.
It then says we can impose a scaling requirement such that ## \mathbf{w}_n ^T \mathbf{w}_n = 1 ##. Putting these two equations together yields the familiar eigenvalue equation.
Question: Where does this first formula come from: ## \mathbf{w}_n ^T A \mathbf{w} ##? As much as I think about it, it doesn't really make much sense to me. I can understand the latter parts of the slide, so if I just move past my misunderstanding, then the rest falls into place. However, I am keen to understand what that 'score' is really calculating.
I was reading through some slides about graph clustering. In the slides was a very short discussion about 'eigenvectors and segmentation'. I don't quite understand where one of the formulae comes from.
Context: We have some undirected graph with an affinity matrix (i.e. weighted adjacency matrix) ##A##. The slide poses the question: What is a good cluster?
It then says: "The element associated with the cluster should have large values connecting one another in the affinity matrix." and then quotes the following formula:
[tex] \mathbf{w}_n ^T A \mathbf{w} [/tex]
where it defines ##\mathbf{w}_{n} ^ T ## = association of element ##i## to cluster ##n##.
It then says we can impose a scaling requirement such that ## \mathbf{w}_n ^T \mathbf{w}_n = 1 ##. Putting these two equations together yields the familiar eigenvalue equation.
Question: Where does this first formula come from: ## \mathbf{w}_n ^T A \mathbf{w} ##? As much as I think about it, it doesn't really make much sense to me. I can understand the latter parts of the slide, so if I just move past my misunderstanding, then the rest falls into place. However, I am keen to understand what that 'score' is really calculating.