Spectral Graph Clustering: where does the 'scoring' function come from

Master1022
Messages
590
Reaction score
116
Homework Statement
For an undirected graph with affinity matrix (i.e. weighted adjacency matrix) ##A##, how can we determine a good cluster using eigenvalues and eigenvectors.
Relevant Equations
Eigenvectors and eigenvalues
Hi,

I was reading through some slides about graph clustering. In the slides was a very short discussion about 'eigenvectors and segmentation'. I don't quite understand where one of the formulae comes from.

Context: We have some undirected graph with an affinity matrix (i.e. weighted adjacency matrix) ##A##. The slide poses the question: What is a good cluster?
It then says: "The element associated with the cluster should have large values connecting one another in the affinity matrix." and then quotes the following formula:
\mathbf{w}_n ^T A \mathbf{w}
where it defines ##\mathbf{w}_{n} ^ T ## = association of element ##i## to cluster ##n##.
It then says we can impose a scaling requirement such that ## \mathbf{w}_n ^T \mathbf{w}_n = 1 ##. Putting these two equations together yields the familiar eigenvalue equation.

Question: Where does this first formula come from: ## \mathbf{w}_n ^T A \mathbf{w} ##? As much as I think about it, it doesn't really make much sense to me. I can understand the latter parts of the slide, so if I just move past my misunderstanding, then the rest falls into place. However, I am keen to understand what that 'score' is really calculating.
 
Physics news on Phys.org
You can write that as ##\sum_{I,j} w_i a_{ij} w_j##, which for every choice of vertices ##i## and ##j## adds the products of their weights in the cluster and how strong their edge in the graph is.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top