- #1
Fermat1
- 187
- 0
Consider the region above the $z=-\sqrt{2-x^2-y^2}$ and below $z=-\sqrt{x^2+y^2}$.
Let $x=r\sin\phi\cos\theta$, $y=r\sin\phi\sin\theta$, $z=r\cos\phi$
I want the range of the variables. I get $0\leq r\leq\sqrt{2}$.
How do I work out the range of $\phi$ and $\theta$ ?
Let $x=r\sin\phi\cos\theta$, $y=r\sin\phi\sin\theta$, $z=r\cos\phi$
I want the range of the variables. I get $0\leq r\leq\sqrt{2}$.
How do I work out the range of $\phi$ and $\theta$ ?