- #1
arcnets
- 508
- 0
Among all square-based pyramids which have volume V = 1, which one has the smallest surface area?
A square-based pyramid is a 3-dimensional shape with a square base and four triangular faces that meet at a point, known as the apex.
The surface area of a square-based pyramid can be calculated by finding the area of the base (length x width) and adding the areas of the four triangular faces (1/2 x base x height) together.
The formula for finding the surface area of a square-based pyramid is SA = B + 4(1/2 x base x height), where SA is the surface area, B is the area of the base, and base and height refer to the dimensions of the triangular faces.
Yes, the surface area of a square-based pyramid can be calculated using only the length of the edges. The formula for this is SA = 2(√3 x edge length)^2.
The surface area of a square-based pyramid is typically smaller than other types of pyramids with the same base area, such as rectangular or triangular pyramids. This is because the square base allows for less surface area for the same volume.