Statistical Mechanics: Solving for Average Energy of System

AI Thread Summary
The discussion revolves around calculating the average energy of a system of N identical particles in a box, using the Hamiltonian defined by their linear momentum and kinetic energy. The user is trying to derive the partition function Z and is uncertain about the correctness of their calculations. A response clarifies that the integral can be evaluated by converting to spherical coordinates, simplifying the process significantly. The integral ultimately leads to a solvable form involving a standard exponential integral. This approach allows for the completion of the calculation for the average energy of the system.
arnesmeets
Messages
18
Reaction score
2
This shouldn't be too hard but I'm struggling.

Consider N identical particles in a box of volume V. The relation between their linear momentum and kinetic energy is given by E = c\left|\overrightarrow{p}\right|, where c is the speed of light. So, the Hamiltonian of the system is

H_N\left(\overrightarrow{q_1},\,\cdots,\overrightarrow{q_N},\overrightarrow{p_1},\,\cdots,\overrightarrow{p_N}\right) = c \sum_{i = 1}^N \left|p_i\right|
Now, I'm trying to find the average energy of the system. So, I need to get Z:

Z = \int \exp\left(-\beta \cdot c \cdot \sum_i \left|p_i\right|\right) d\overrightarrow{q_1}\cdots d\overrightarrow{q_N} d\overrightarrow{p_1}\cdots d\overrightarrow{p_N} = V^{N} \cdot \left(\int \exp\left(-\beta \cdot c \cdot \left|\overrightarrow{p}\right|\right) d\overrightarrow{p}\right)^NNow, I've got two questions:

1) Is there any mistake in the calculations for Z above?
2) How to evaluate the integral?? :blushing:
 
Last edited:
Physics news on Phys.org
Does nobody have a clue?:confused:
 
You can solve the integral quite easily by transforming to spherical coordinates (r,\theta, \phi). So the integral becomes:

\int_0^{2\pi} \int_0^{\pi} \int_0^{\infty} e^{-\beta r} r^2\sin{\theta} dr d\theta d\phi = 4\pi \int_0^{\infty} r^2 e^{-\beta r}dr

I think you can now solve the rest on your own :smile:
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top