- #1
alexmahone
- 304
- 0
Let $\{a_n\}$ be a sequence, and $\{a_{n_i}\}$ be any subsequence. Prove that if $\sum_{n=0}^\infty a_n$ is absolutely convergent, then $\sum_{i=0}^\infty a_{n_i}$ is absolutely convergent.
My attempt:
$\sum |\ a_n|$ is convergent.
$b_n=\left\{ \begin{array}{rcl}|a_{n_i}|\ &\text{for}& \ n=n_i \\ 0\ &\text{for}& \ n\neq n_i\end{array} \right.$
$0\le b_n\le\ |a_n|$ for all $n$.
Since $\sum |\ a_n|$ converges, $\sum b_n$ converges.
So, $\sum|\ a_{n_i}|$ converges. ($\because\sum_{n=0}^{n_i}b_n=\sum_{i=0}^i|\ a_{n_i}|$)
Is that okay?
My attempt:
$\sum |\ a_n|$ is convergent.
$b_n=\left\{ \begin{array}{rcl}|a_{n_i}|\ &\text{for}& \ n=n_i \\ 0\ &\text{for}& \ n\neq n_i\end{array} \right.$
$0\le b_n\le\ |a_n|$ for all $n$.
Since $\sum |\ a_n|$ converges, $\sum b_n$ converges.
So, $\sum|\ a_{n_i}|$ converges. ($\because\sum_{n=0}^{n_i}b_n=\sum_{i=0}^i|\ a_{n_i}|$)
Is that okay?