Symmetry regarding induced potentials?

In summary, symmetry regarding induced potentials refers to the relationship between the geometric arrangement of charges and the resulting electric potentials they generate. When charge distributions exhibit symmetrical properties, such as spherical or cylindrical symmetry, the induced potentials can be more easily analyzed and calculated. This symmetry simplifies the mathematical treatment of electric fields and potentials, leading to clearer insights into the behavior of charged systems and their interactions. Understanding these principles is crucial in fields like electrostatics and electromagnetic theory.
  • #1
haruspex
Science Advisor
Homework Helper
Insights Author
Gold Member
42,136
10,204
TL;DR Summary
Is it true that the potential arising at A from induced charges on conductor B from point charge q at C = that arising at C from induction on B from charge q at A?
A homework thread, https://www.physicsforums.com/threa...etal-sheet-along-a-spherical-surface.1057702/, references https://arxiv.org/pdf/1007.2175.pdf.
There is an uncharged conductor and a point charge. In the paper referenced, ##\bar\phi_y(x)## is defined as the potential at x due to the induced charges on the conductor when the point charge is at y.
As justification for eqn 10 it states that ##\bar\phi_x(y)=\bar\phi_y(x)##.
I cannot see why that should be true, but I cannot construct any counterexample.
Is it evident, or maybe some standard result?
 
Physics news on Phys.org
  • #2
Thank you for trying to clarify this point, I had already given up hope. But even if ##\bar\phi_x(y)=\bar\phi_y(x)## were true (assume this to be true for a moment, though it remains to be verified), what obvious relationship prompts the assertion that, since ##bar\phi_x(y)=\bar\phi_y(x)##, then ##\frac{q}{2} \nabla_x \phi_x(x) =- F(x)##?
 
  • #3
haruspex said:
As justification for eqn 10 it states that ##\bar\phi_x(y)=\bar\phi_y(x)##.
I cannot see why that should be true, but I cannot construct any counterexample.
Is it evident, or maybe some standard result?
This is an interesting result that can be deduced from Green's Reciprocity Theorem (see equation 5).
 
  • Like
Likes PhDeezNutz, vanhees71 and haruspex
  • #4
TSny said:
This is an interesting result that can be deduced from Green's Reciprocity Theorem (see equation 5).
Darn, you just beat me to it! But I'll go ahead and post my response:
Start from two charge densities ##\rho_x,\rho_y## that give rise to two electrostatic potentials ##\phi_x,\phi_y## via Poisson's equation:$$\nabla^{2}\phi_{x}\left(z\right)=-\rho_{x}\left(z\right)/\varepsilon,\;\nabla^{2}\phi_{y}\left(z\right)=-\rho_{y}\left(z\right)/\varepsilon$$and suppose that the charge densities and fields vanish sufficiently fast at spatial infinity so that boundary terms are ignorable (in other words, the usual physicist's assumption!). Then Green's second identity (https://en.wikipedia.org/wiki/Green's_identities) can be written in terms of ##\phi_1,\phi_2## as:$$0=\int\left(\phi_{x}\left(z\right)\nabla^{2}\phi_{y}\left(z\right)-\phi_{y}\left(z\right)\nabla^{2}\phi_{x}\left(z\right)\right)d^{3}z=\varepsilon^{-1}\int\left(\phi_{y}\left(z\right)\rho_{x}\left(z\right)-\phi_{x}\left(z\right)\rho_{y}\left(z\right)\right)d^{3}z$$where the integration extends over all space. This result is known in electrostatics as Green's Reciprocity (https://en.wikipedia.org/wiki/Reciprocity_(electromagnetism)). Now specialize to point charges ##\rho_{x}\left(z\right)=q_{x}\delta^{3}\left(z-x\right),\;\rho_{y}\left(z\right)=q_{y}\delta^{3}\left(z-y\right)## located at positions ##x,y##:$$0=\varepsilon^{-1}\int\left(\phi_{y}\left(z\right)q_{x}\delta^{3}\left(z-x\right)-\phi_{x}\left(z\right)q_{y}\delta^{3}\left(z-y\right)\right)d^{3}z=\varepsilon^{-1}\left(q_{x}\phi_{y}\left(x\right)-q_{y}\phi_{x}\left(y\right)\right)$$In particular, if ##q_x=q_y## (as is apparently the case in the cited external reference), then the simple reciprocal relation ##\phi_{y}\left(x\right)=\phi_{x}\left(y\right)## indeed holds.
 
  • Like
Likes vanhees71 and TSny
  • #5
renormalize said:
Now specialize to point charges ##\rho_{x}\left(z\right)=q_{x}\delta^{3}\left(z-x\right),\;\rho_{y}\left(z\right)=q_{y}\delta^{3}\left(z-y\right)## located at positions ##x,y##:$$0=\varepsilon^{-1}\int\left(\phi_{y}\left(z\right)q_{x}\delta^{3}\left(z-x\right)-\phi_{x}\left(z\right)q_{y}\delta^{3}\left(z-y\right)\right)d^{3}z=\varepsilon^{-1}\left(q_{x}\phi_{y}\left(x\right)-q_{y}\phi_{x}\left(y\right)\right)$$In particular, if ##q_x=q_y## (as is apparently the case in the cited external reference), then the simple reciprocal relation ##\phi_{y}\left(x\right)=\phi_{x}\left(y\right)## indeed holds.
OK. But, besides the point charge, there will also be induced surface charge density on the conductor. So, the integration over ##\rho## should include integration over the surface of the conductor. However, you can show this integration equals zero using the fact that the conductor's surface is an equipotential surface and the net charge on the surface is zero.
 

FAQ: Symmetry regarding induced potentials?

What is symmetry in the context of induced potentials?

Symmetry in the context of induced potentials refers to the invariance of the potential field when certain transformations, such as rotations or reflections, are applied. This means that the potential remains unchanged under these operations, which can simplify the analysis and understanding of the system.

How does symmetry affect the calculation of induced potentials?

Symmetry can significantly simplify the calculation of induced potentials by reducing the complexity of the system. When a system exhibits symmetry, it often allows for the use of symmetry arguments to reduce the number of variables and equations needed to describe the potential, making analytical or numerical solutions more tractable.

What role does symmetry play in physical systems with induced potentials?

Symmetry plays a crucial role in physical systems with induced potentials by dictating the behavior and distribution of the potentials. For example, in electrostatics, the symmetry of charge distributions can determine the symmetry of the resulting electric field and potential, leading to predictable patterns and simplifying the analysis.

Can symmetry be used to predict the behavior of induced potentials in complex systems?

Yes, symmetry can be used to predict the behavior of induced potentials in complex systems. By identifying symmetrical properties and applying symmetry principles, one can often make qualitative and quantitative predictions about the potential distribution and its effects, even in otherwise complicated systems.

What are some common types of symmetry relevant to induced potentials?

Common types of symmetry relevant to induced potentials include rotational symmetry, reflection symmetry, translational symmetry, and inversion symmetry. Each type of symmetry can impose specific constraints on the potential field, leading to characteristic patterns and simplifying the mathematical treatment of the problem.

Back
Top