olyviab
- 10
- 0
Homework Statement
Write the Taylor series of the function f(x) = (\pi -x)^-2 around a = 0
Homework Equations
(\pi - x)^-2 = f(a) + f'(a)(x-a) + [f''(a)(x-a)^2]/(2!) +...+ [f^n(a)(x-a)^n]/(n!)
The Attempt at a Solution
This is what i have and i am not sure i am showing it correctly or compleatly.
f(x) = (\pi -x)^-2
f'(x) = 2(\pi - x)^-3
f''(x) = 6(\pi - x)^-4
f'''(x) = 24(\pi - x)^-5
(\pi - x)^-2 = f(a) + [f'(a)(x-a)^2]/(2!) +...+ [f^n(a)(x-a)^n]/(n!)
= (\pi-0)^-2 + [(2(\pi-0)^-3)(x-0)^2]/(2!) + [(6(\pi-0)^-4)(x-0)^3]/(3!) + ...
= \pi^-2 + 2(\pi^-3)x +[6(\pi^-4)(x^2)]/(2!) + [24(\pi^-5)(x^3)]/(3!) + ...
Last edited: