- #1
nj_phy
- 2
- 0
[SOLVED] Tension: Force + Velocity. Breaking Strength.
The tension at which a fishing line breaks is commonly called the ``breaking strength''. What minimum breaking strength is needed for a fishing line to stop a salmon that weighs 90.0 N in 18.0 cm if the fish is moving horizontally with an initial velocity of 2.5 m/s? Assume the acceleration is constant.
F=mg, F=ma, V^2 = Vo^2 + 2a(X-Xo)
I'm not really sure how to tackle this problem. At first I simply assumed the minimum breaking strength of the string would have to be at least > 90N. However the fact that it's moving at 2.5m/s says to me that the 18cm of distance traveled increases the force created by the fish. But I'm not sure, algebraically, how to relate Force to Velocity. Also, since the fish weighs 90N, that implies its weight in relation to gravity. How would this translate when analyzing only movement in the X direction?
Homework Statement
The tension at which a fishing line breaks is commonly called the ``breaking strength''. What minimum breaking strength is needed for a fishing line to stop a salmon that weighs 90.0 N in 18.0 cm if the fish is moving horizontally with an initial velocity of 2.5 m/s? Assume the acceleration is constant.
Homework Equations
F=mg, F=ma, V^2 = Vo^2 + 2a(X-Xo)
The Attempt at a Solution
I'm not really sure how to tackle this problem. At first I simply assumed the minimum breaking strength of the string would have to be at least > 90N. However the fact that it's moving at 2.5m/s says to me that the 18cm of distance traveled increases the force created by the fish. But I'm not sure, algebraically, how to relate Force to Velocity. Also, since the fish weighs 90N, that implies its weight in relation to gravity. How would this translate when analyzing only movement in the X direction?
Last edited: