Tension in rope between falling objects

AI Thread Summary
To find the tension in the rope between two falling objects of mass m, consider the forces acting on each object: tension and gravitational force. Each object experiences gravitational acceleration, and since they are connected, they will share the same acceleration. The equations of motion for both objects must be set up separately, accounting for the forces acting on each. Notably, the mutual gravitational force between the two masses can be neglected as it is significantly smaller than the gravitational forces acting on them from Earth. Understanding these principles is crucial for accurately calculating the tension in the rope.
team31
Messages
10
Reaction score
0
Two point-lie objects, each with mass m, are connected by a massless rope of length l. The objects are suspened vertically near the surface of Earth, so that one object is hanging below the other. Then the objects are released. How can I find the tension in the rope?
I know there 3 force, tension, Graviational Froce on each block. but how can I set them up?
my first thought was (M*m*G)/(R^2)+(M*m*G)/((R+l)^2)-T-(m*m*G)/(l^2)=(2m)G/(R^2). I know it's wrong but I don't know where's my mistake.
 
Physics news on Phys.org
First of all, I think it is sufficient to assume R^2 = (R+l)^2.

Secondly, there are two equations of motion (one for each particle), not just one, and in each equation you consider only the forces acting the given particle. On the lower particle you have 2 forces: tension up and gravity down. Similarly for the upper particle.

The most important observation to make is that if there is tension in the rope at all, the particles will accelerate with the same acceleration. This can be seen by noticing that the z-positions of the bodies differ by a constant (the length of the rope).
 
so is that the graviational force between the tow mass is counted as part of the tension
 
I see... I would tend to neglect the mutual gravitation of the two particles. It seems to me to be much smaller than the other quantities involved.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top