- #1
mnb96
- 715
- 5
Hello,
if I have a set of functions of the kind [itex]\{ f_t | f_t:\mathbb{R}^2 \rightarrow \mathbb{R}^2 \; ,t\in \mathbb{R} \}[/itex], where t is a real scalar parameter. The operation I consider is the composition of functions. What should I do in order to show that it forms a Lie Group?
if I have a set of functions of the kind [itex]\{ f_t | f_t:\mathbb{R}^2 \rightarrow \mathbb{R}^2 \; ,t\in \mathbb{R} \}[/itex], where t is a real scalar parameter. The operation I consider is the composition of functions. What should I do in order to show that it forms a Lie Group?
Last edited: