- #1
docnet
Gold Member
- 799
- 486
- Homework Statement
- .
- Relevant Equations
- .
The probability mass function of X and Y:
$$p_{X,Y}(1,1)= \frac{1}{2}\cdot \frac{3}{4}=\frac{3}{8}$$
$$p_{X,Y}(1,0)=\frac{1}{2}\cdot \frac{1}{4}=\frac{1}{8}$$
$$p_{X,Y}(0,1)= \frac{1}{2}\cdot \frac{3}{4}=\frac{3}{8}$$
$$p_{X,Y}(0,0)= \frac{1}{2}\cdot \frac{1}{4}=\frac{1}{8}$$
or
$$
p_{X,Y}(a,b)=
\begin{cases}
\frac{3}{8} & (a,b)=(1,1) \quad \text{or}\quad(a,b)=(0,1) \\
\frac{1}{8} & (a,b)=(1,0) \quad \text{or}\quad(a,b)=(0,0)
\end{cases}$$
(b)
The marginal distribution of X is
$$p_X(1)=p_{X,Y}(1,0)+p_{X,Y}(1,1)=\frac{1}{2}\frac{3}{4}+\frac{1}{2}\frac{1}{4}=\frac{1}{2}$$
$$p_X(0)=p_{X,Y}(0,0)+p_{X,Y}(0,1)=\frac{1}{2}\frac{1}{4}+\frac{1}{2}\frac{3}{4}=\frac{1}{2}$$
The marginal distribution of Y is
$$p_Y(1)=p_{X,Y}(0,1)+p_{X,Y}(1,1)=\frac{1}{2}\frac{3}{4}+\frac{1}{2}\frac{1}{4}=\frac{3}{4}$$
$$p_Y(0)=p_{X,Y}(0,0)+p_{X,Y}(1,0)=\frac{1}{2}\frac{1}{4}+\frac{1}{2}\frac{3}{4}=\frac{1}{4}$$
(c)
The expected value of Y is
$$E(Y)=1\cdot p_Y(1)+0\cdot p_Y(0)=\frac{3}{4}$$
(d)
$$E((X-0.5)\times Y)=\sum\limits_{(a,b)}(a-.5)bp_{X,Y}(a,b)$$
$$(1-0.5)(1)p_{X,Y}(1,1)+(1-0.5)(0)p_{X,Y}(1,0)+$$
$$(0-0.5)(1)p_{X,Y}(0,1)+(0-0.5)(0)p_{X,Y}(0,0)=$$
$$\frac{1}{2}\cdot\frac{3}{8}+0-\frac{1}{2}\cdot \frac{3}{8}+0=0$$