- #1
mma
- 253
- 3
- TL;DR Summary
- What is this beyond a calculation trick to calculate the pseudo-norm as if it were an Euclidean norm?
In relativity theory, it's a common habit to use a quadruplet [itex]x=(x_0, x_1, x_2, x_3)[/itex] with [itex]x_0=ict[/itex] (or with [itex]c=1[/itex], [itex]x_0=it[/itex] ) instead of [itex](t,x_1,x_2,x_3)\in \mathbb R^4[/itex], and to use the formal Euclidean metric [itex]\|x\|^2=\sum_{i=0}^3x_i^2[/itex] instead of the Minkowski pseudo-metric [itex]-t^2 + \sum_{i=1}^3x_i^2[/itex]. But what is [itex](it,x_1,x_2,x_3)[/itex] by itself? For a long time I didn't think there was any real mathematics behind this formal computation trick. Until I came across F. F. Eberlein's "The Spin Model of Euclidean 3-space"1 and "Models of spacetime"2. From them I learned that it is possible to make mathematically well-defined sense of this.
Eberlein's Euclidean 3-space [itex]\mathfrak E_3[/itex] consists of the traceless, Hermitian [itex]2\times 2[/itex] complex matrices with scalar product [itex]A\cdot B:=\frac{1}{2}(AB+BA)/I[/itex] where [itex]AB[/itex] means the product of the matrices [itex]A[/itex] and [itex]B[/itex], [itex]I[/itex] is the [itex]2\times 2[/itex] identity matrix and for a diagonal matrix [itex]D=\lambda I[/itex], D[itex]/I:=\lambda[/itex]. Eberlein proves that for any [itex]A, B\in\mathfrak E_3[/itex], [itex]AB[/itex] is always diagonal, [itex](AB+BA)/I[/itex] is real-valued, and the above-defined [itex]\mathfrak E_3^2\to \mathbb R: (A,B)\mapsto A\cdot B[/itex] function is a symmetric, positive definite nondegenerate bilinear form, i.e. and Euclidean scalar product. In [itex]\mathfrak E_3[/itex], the Pauli-matrices form an orthogonal basis. Furthermore, [itex]A\cdot A=-\mathrm{det}A[/itex], and [itex]i\mathfrak E_3=\mathfrak{su}(2)[/itex]
The space of quaternions, [itex]\mathbb H:=\mathbb RI\oplus\mathfrak{su}(2) = \mathbb RI + i\mathfrak E_3[/itex] is also an Euclidean space with Euclidean norm [itex]\|q\|^2=\mathrm{det}(q)[/itex]. For [itex]q = tI + iA\in\mathbb H[/itex] ([itex]A\in\mathfrak E_3[/itex]), [itex]\mathrm{det}(q) = t^2 - \mathrm{det}(A)[/itex], so, taking an orthonormal basis [itex](\xi_1, \xi_2, \xi_3)[/itex] in [itex]\mathfrak E_3[/itex] and taking any [itex]q = tI + i\sum_{i=1}^nx_i \xi_i\in \mathbb H[/itex] ([itex]t,x_i\in\mathbb R[/itex]), [itex]\|q\|^2=t^2+\sum_{i=1}^3x_i^2[/itex].
In contrast of this, the space [itex]\mathbb RI \oplus \mathfrak E_3[/itex] with the pseudo-norm [itex]\|v\|^2=\mathrm{det}(v)[/itex] is a Minkowski space with signature [itex](1,3)[/itex], that is, the space [itex]M:=i\mathbb RI \oplus i\mathfrak E_3=i\mathbb RI \oplus \mathfrak{su}(2)[/itex] with pseudo-norm [itex]\|v\|^2 = \mathrm{det}(v)[/itex] is a Minkowski space with the usual signature [itex](3,1)[/itex]. Taking any [itex]v = itI + i\sum_{i=1}^nx_i \xi_i\in M[/itex] ([itex]t,x_i\in\mathbb R[/itex], [itex](\xi_1, \xi_2, \xi_3)[/itex] is an orthonormal basis in [itex]\mathfrak E_3[/itex]), [itex]\|v\|^2=(it)^2+\sum_{i=1}^3x_i^2[/itex]
Now, if we take an orthonormal basis [itex]\{I,e_1,e_2,e_3\}[/itex] in the Euclidean space [itex]\mathbb H[/itex], and take a vector [itex](t,x_1,x_2,x_3):=tI+\sum_{i=1}^3x_ie_i[/itex], then [itex](it,x_1,x_2,x_3):=itI+\sum_{i=1}^3x_ie_i[/itex] is a vector in the Minkowski space [itex]M[/itex]. In short, [itex](it,x_1,x_2,x_3)[/itex] are the coordinates of a vector of [itex]M[/itex] with respect to an orthonormal basis of [itex]\mathbb H[/itex]. This makes sense, since both [itex]\mathbb H[/itex] and [itex]\mathbb M[/itex] consist of [itex]2\times 2[/itex] complex matrices.
The above mathematization of [itex](it,x_2,x_2,x_3)[/itex] heavily relies on the specific model of the Euclidean space and the Minkowski space. I wonder if is there another way to make [itex](it,x_2,x_2,x_3)[/itex] mathematically meaningful?
--------------
1Am. Math. Mon. 69, 587-598 (1962). A crucial correction. Ibid. 69, 960 (1963).
2Bull. Amer. Math. Soc. 71 (1965), 731-736
Eberlein's Euclidean 3-space [itex]\mathfrak E_3[/itex] consists of the traceless, Hermitian [itex]2\times 2[/itex] complex matrices with scalar product [itex]A\cdot B:=\frac{1}{2}(AB+BA)/I[/itex] where [itex]AB[/itex] means the product of the matrices [itex]A[/itex] and [itex]B[/itex], [itex]I[/itex] is the [itex]2\times 2[/itex] identity matrix and for a diagonal matrix [itex]D=\lambda I[/itex], D[itex]/I:=\lambda[/itex]. Eberlein proves that for any [itex]A, B\in\mathfrak E_3[/itex], [itex]AB[/itex] is always diagonal, [itex](AB+BA)/I[/itex] is real-valued, and the above-defined [itex]\mathfrak E_3^2\to \mathbb R: (A,B)\mapsto A\cdot B[/itex] function is a symmetric, positive definite nondegenerate bilinear form, i.e. and Euclidean scalar product. In [itex]\mathfrak E_3[/itex], the Pauli-matrices form an orthogonal basis. Furthermore, [itex]A\cdot A=-\mathrm{det}A[/itex], and [itex]i\mathfrak E_3=\mathfrak{su}(2)[/itex]
The space of quaternions, [itex]\mathbb H:=\mathbb RI\oplus\mathfrak{su}(2) = \mathbb RI + i\mathfrak E_3[/itex] is also an Euclidean space with Euclidean norm [itex]\|q\|^2=\mathrm{det}(q)[/itex]. For [itex]q = tI + iA\in\mathbb H[/itex] ([itex]A\in\mathfrak E_3[/itex]), [itex]\mathrm{det}(q) = t^2 - \mathrm{det}(A)[/itex], so, taking an orthonormal basis [itex](\xi_1, \xi_2, \xi_3)[/itex] in [itex]\mathfrak E_3[/itex] and taking any [itex]q = tI + i\sum_{i=1}^nx_i \xi_i\in \mathbb H[/itex] ([itex]t,x_i\in\mathbb R[/itex]), [itex]\|q\|^2=t^2+\sum_{i=1}^3x_i^2[/itex].
In contrast of this, the space [itex]\mathbb RI \oplus \mathfrak E_3[/itex] with the pseudo-norm [itex]\|v\|^2=\mathrm{det}(v)[/itex] is a Minkowski space with signature [itex](1,3)[/itex], that is, the space [itex]M:=i\mathbb RI \oplus i\mathfrak E_3=i\mathbb RI \oplus \mathfrak{su}(2)[/itex] with pseudo-norm [itex]\|v\|^2 = \mathrm{det}(v)[/itex] is a Minkowski space with the usual signature [itex](3,1)[/itex]. Taking any [itex]v = itI + i\sum_{i=1}^nx_i \xi_i\in M[/itex] ([itex]t,x_i\in\mathbb R[/itex], [itex](\xi_1, \xi_2, \xi_3)[/itex] is an orthonormal basis in [itex]\mathfrak E_3[/itex]), [itex]\|v\|^2=(it)^2+\sum_{i=1}^3x_i^2[/itex]
Now, if we take an orthonormal basis [itex]\{I,e_1,e_2,e_3\}[/itex] in the Euclidean space [itex]\mathbb H[/itex], and take a vector [itex](t,x_1,x_2,x_3):=tI+\sum_{i=1}^3x_ie_i[/itex], then [itex](it,x_1,x_2,x_3):=itI+\sum_{i=1}^3x_ie_i[/itex] is a vector in the Minkowski space [itex]M[/itex]. In short, [itex](it,x_1,x_2,x_3)[/itex] are the coordinates of a vector of [itex]M[/itex] with respect to an orthonormal basis of [itex]\mathbb H[/itex]. This makes sense, since both [itex]\mathbb H[/itex] and [itex]\mathbb M[/itex] consist of [itex]2\times 2[/itex] complex matrices.
The above mathematization of [itex](it,x_2,x_2,x_3)[/itex] heavily relies on the specific model of the Euclidean space and the Minkowski space. I wonder if is there another way to make [itex](it,x_2,x_2,x_3)[/itex] mathematically meaningful?
--------------
1Am. Math. Mon. 69, 587-598 (1962). A crucial correction. Ibid. 69, 960 (1963).
2Bull. Amer. Math. Soc. 71 (1965), 731-736