The value of a Fourier series at a jump point (discontinuity)

Amaelle
Messages
309
Reaction score
54
Homework Statement
calculate the value of the fourier serie at x=e for the e periodic function (0,e]
f(x)=log(x)
Relevant Equations
Fourier serie
Greetings
according to the function we can see that there is a jump at x=e and I know that the value of the function at x=e should be the average between the value of f(x) at this points
my problem is the following
the limit of f(x) at x=e is -infinity and f(e)=1
how can we deal with such situations?

thank you!
 
Physics news on Phys.org
Since ##f(0^+) = -\infty##, your function doesn't satisfy the Dirichlet conditions, so the usual theorem about convergence doesn't apply.
 
LCKurtz said:
Since ##f(0^+) = -\infty##, your function doesn't satisfy the Dirichlet conditions, so the usual theorem about convergence doesn't apply.
thanks a million!
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top