I The vector math of relative motion of wire-loop & bar magnet

AI Thread Summary
The discussion centers on the vector math involved in the relative motion between a wire-loop and a bar magnet. It emphasizes that the changing magnetic flux through the wire-loop, as described by Faraday's law, generates an electric field due to the lateral component of the magnetic field, not the component aligned with the motion. The force on the charges within the wire-loop arises from this lateral magnetic field, as the motion is perpendicular to the magnetic field direction. This clarification is crucial for understanding the mechanics of electromagnetic induction in this scenario. Overall, the analysis presented is deemed accurate and highlights the importance of distinguishing between different components of the magnetic field.
swampwiz
Messages
567
Reaction score
83
I was watching this video about how the problem of a wire-loop moving relative to a bar magnet:



The case of presuming that the wire-loop is fixed seems to be that the magnetic flux (along the surface normal to the direction of the centerline - call it C) through the wire-loop is changing in time, thus causing there to be a net electrical field along the wire-loop, as per Faraday's law (or Maxwell's 3rd law). However, the case of presuming that the bar magnet is fixed seems to be that it is not the component of the magnetic field in the direction of the motion, but rather the component of the magnetic field in the direction going laterally away from the centerline of the magnet (call it R), such that charges of both sign-types are moving with a velocity in C, thus imparting a force (let's presume that the right-hand rule is C x R = T ) that is in the T direction, but in the direction as per the sign-type of charge, thus generating an electrical field along the wire; I would presume that the positive charges, the nuclei, resist the force, and that this is imparted back to the magnet (it would cancel out since it would be from a loop), but the negative charges, the electrons, get pushed through the wire loop, which is equivalent to there being an electric field in the wire.

I think the lecturer was not careful in explaining that it is the component of the magnetic field in the lateral direction, and someone who is used to thinking about magnetic flux through a wire-loop as the component in the centerline direction could very well think that it is this component causing the force - but that cannot be since the motion of the wire-loop itself is in the centerline direction, and since the cross-product of parallel vectors is 0, the force on the charges would be 0.

Is this accurate?
 
Physics news on Phys.org


Yes, your understanding of the vector math of relative motion between a wire-loop and a bar magnet is accurate. The key concept to understand is that the force on the charges in the wire-loop is not caused by the component of the magnetic field in the direction of motion, but rather by the component of the magnetic field in the lateral direction. This is because the motion of the wire-loop is perpendicular to the direction of the magnetic field, so the cross-product of these vectors is not zero, resulting in a non-zero force on the charges. It is important to clarify this point, as it may be confusing for someone who is used to thinking about magnetic flux through a wire-loop in terms of the component in the centerline direction. Overall, your analysis of the relative motion between the wire-loop and bar magnet is correct.
 
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
I was using the Smith chart to determine the input impedance of a transmission line that has a reflection from the load. One can do this if one knows the characteristic impedance Zo, the degree of mismatch of the load ZL and the length of the transmission line in wavelengths. However, my question is: Consider the input impedance of a wave which appears back at the source after reflection from the load and has traveled for some fraction of a wavelength. The impedance of this wave as it...
Back
Top