- #246
mitchell porter
Gold Member
- 1,465
- 720
I have just run across two highly relevant papers by Armoni - 1310.2027 and 1310.3653. They came out near the start of this thread's long dormant period, from late 2013 through all of 2014... The first one, in particular, is remarkable for how many of our themes it contains.
I'll set the scene with a remark from that first paper (page 7). We are dealing with a field theory which is realized in string theory by a "Hanany-Witten" brane configuration "identical to the brane configuration that realizes SO(2N) SQCD, except that the D4-branes are replaced by anti D4-branes".
I'm emphasizing this because, if we do have to study this one in detail, we know that the place to begin is with the configuration that realizes SO(2N) SQCD. Armoni is interested in a similar but non-supersymmetric theory; but it may be that we will want to go back to the supersymmetric prototype.
Another thing to note is that these Hanany-Witten configurations can be lifted to M-theory. In Type II theories, they appear as a web of D-branes and NS-branes (and in this case, an orientifold plane), but in M-theory, they can be realized as a single M5-brane, on the right geometric background.
Armoni is concerned with two field theories, an electric theory and a magnetic theory. He is proposing a Seiberg duality. Inter-brane forces which cause the branes to rearrange themselves are also a part of it.
What I want to note here, are the symmetries and some of the particle content. The flavor symmetry is SO(2Nf). There are particles in the non-supersymmetric theory (but which is, remember, descended from a supersymmetric theory) which he calls quarks, squarks, a gluino, a meson, and a mesino. The gluino transforms in an antisymmetric two-index representation of the gauge group, so it might be a toss-up as to whether the gluino or the squarks are more like diquarks.
On page 18, the breaking chain SU(2Nf) -> SO(2Nf) -> U(Nf) is referenced. And the companion paper talks about chiral symmetry breaking.
I'll set the scene with a remark from that first paper (page 7). We are dealing with a field theory which is realized in string theory by a "Hanany-Witten" brane configuration "identical to the brane configuration that realizes SO(2N) SQCD, except that the D4-branes are replaced by anti D4-branes".
I'm emphasizing this because, if we do have to study this one in detail, we know that the place to begin is with the configuration that realizes SO(2N) SQCD. Armoni is interested in a similar but non-supersymmetric theory; but it may be that we will want to go back to the supersymmetric prototype.
Another thing to note is that these Hanany-Witten configurations can be lifted to M-theory. In Type II theories, they appear as a web of D-branes and NS-branes (and in this case, an orientifold plane), but in M-theory, they can be realized as a single M5-brane, on the right geometric background.
Armoni is concerned with two field theories, an electric theory and a magnetic theory. He is proposing a Seiberg duality. Inter-brane forces which cause the branes to rearrange themselves are also a part of it.
What I want to note here, are the symmetries and some of the particle content. The flavor symmetry is SO(2Nf). There are particles in the non-supersymmetric theory (but which is, remember, descended from a supersymmetric theory) which he calls quarks, squarks, a gluino, a meson, and a mesino. The gluino transforms in an antisymmetric two-index representation of the gauge group, so it might be a toss-up as to whether the gluino or the squarks are more like diquarks.
On page 18, the breaking chain SU(2Nf) -> SO(2Nf) -> U(Nf) is referenced. And the companion paper talks about chiral symmetry breaking.